10 research outputs found

    La fatigue chez le patient cérébrolésé et son impact sur la réinsertion socioprofessionnelle [Fatigue after acquired brain injury and its impact on socio-professional reintegration]

    No full text
    Patients with acquired brain injury often suffer from pathological fatigue that differs from "normal" fatigue in that it appears more quickly and during non-demanding tasks, and recovery is not complete despite rest. It limits physical and cognitive activities, interferes with rehabilitation and return to work. The underlying mechanisms are poorly understood but appear to involve dysfunction of brain interactions. Current management combining physical reconditioning, cognitive compensatory strategies, and treatment of associated factors often leads to significant clinical improvement and promotes socio-professional reintegration. However, the effect remains insufficient in some patients, which underlines the importance of developing new therapeutic approaches based on a better understanding of the underlying neuronal deficits

    Disconnectomics of the Rich Club Impacts Motor Recovery After Stroke.

    No full text
    Structural brain networks possess a few hubs, which are not only highly connected to the rest of the brain but are also highly connected to each other. These hubs, which form a rich-club, play a central role in global brain organization. To investigate whether the concept of rich-club sheds new light on poststroke recovery, we applied a novel network-theoretical quantification of lesions to patients with stroke and compared the outcomes with what lesion size alone would indicate. Whole-brain structural networks of 73 patients with ischemic stroke were reconstructed using diffusion-weighted imaging data. Disconnectomes, a new type of network analyses, were constructed using only those fibers that pass through the lesion. Fugl-Meyer upper extremity scores and their changes were used to determine whether the patients show natural recovery or not. Cluster analysis revealed 3 patient clusters: small-lesion-good-recovery, midsized-lesion-poor-recovery (MLPR), and large-lesion-poor-recovery (LLPR). The small-lesion-good-recovery consisted of subjects whose lesions were small, and whose prospects for recovery were relatively good. To explain the nondifference in recovery between the MLPR and LLPR clusters despite the difference (LLPR>MLPR) in lesion volume, we defined the [Formula: see text] metric to be the sum of the entries in the disconnectome and, more importantly, the [Formula: see text] to be the sum of all entries in the disconnectome corresponding to edges with at least one node in the rich-club. Unlike lesion volume and corticospinal tract damage (MLPR<LLPR), for [Formula: see text], this relationship was reversed (MLPR>LLPR) or showed no difference for [Formula: see text]. Smaller lesions that focus on the rich-club can be just as devastating as much larger lesions that do not focus on the rich-club, pointing to the role of the rich-club as a backbone for functional communication within brain networks and for recovery from stroke

    Heartbeat-enhanced immersive virtual reality to treat complex regional pain syndrome.

    No full text
    To develop and test a new immersive digital technology for complex regional pain syndrome (CRPS) that combines principles from mirror therapy and immersive virtual reality and the latest research from multisensory body processing. In this crossover double-blind study, 24 patients with CRPS and 24 age- and sex-matched healthy controls were immersed in a virtual environment and shown a virtual depiction of their affected limb that was flashing in synchrony (or in asynchrony in the control condition) with their own online detected heartbeat (heartbeat-enhanced virtual reality [HEVR]). The primary outcome measures for pain reduction were subjective pain ratings, force strength, and heart rate variability (HRV). HEVR reduced pain ratings, improved motor limb function, and modulated a physiologic pain marker (HRV). These significant improvements were reliable and highly selective, absent in control HEVR conditions, not observed in healthy controls, and obtained without the application of tactile stimulation (or movement) of the painful limb, using a readily available biological signal (the heartbeat) that is most often not consciously perceived (thus preventing placebo effects). Next to these specific and well-controlled analgesic effects, immersive HEVR allows the application of prolonged and repeated doses of digital therapy, enables the automatized integration with existing pain treatments, and avoids application of painful bodily cues while minimizing the active involvement of the patient and therapist. This study provides Class III evidence that HEVR reduces pain and increases force strength in patients with CRPS
    corecore