28 research outputs found

    Recovery of dialysis patients with COVID-19 : health outcomes 3 months after diagnosis in ERACODA

    Get PDF
    Background. Coronavirus disease 2019 (COVID-19)-related short-term mortality is high in dialysis patients, but longer-term outcomes are largely unknown. We therefore assessed patient recovery in a large cohort of dialysis patients 3 months after their COVID-19 diagnosis. Methods. We analyzed data on dialysis patients diagnosed with COVID-19 from 1 February 2020 to 31 March 2021 from the European Renal Association COVID-19 Database (ERACODA). The outcomes studied were patient survival, residence and functional and mental health status (estimated by their treating physician) 3 months after COVID-19 diagnosis. Complete follow-up data were available for 854 surviving patients. Patient characteristics associated with recovery were analyzed using logistic regression. Results. In 2449 hemodialysis patients (mean ± SD age 67.5 ± 14.4 years, 62% male), survival probabilities at 3 months after COVID-19 diagnosis were 90% for nonhospitalized patients (n = 1087), 73% for patients admitted to the hospital but not to an intensive care unit (ICU) (n = 1165) and 40% for those admitted to an ICU (n = 197). Patient survival hardly decreased between 28 days and 3 months after COVID-19 diagnosis. At 3 months, 87% functioned at their pre-existent functional and 94% at their pre-existent mental level. Only few of the surviving patients were still admitted to the hospital (0.8-6.3%) or a nursing home (∼5%). A higher age and frailty score at presentation and ICU admission were associated with worse functional outcome. Conclusions. Mortality between 28 days and 3 months after COVID-19 diagnosis was low and the majority of patients who survived COVID-19 recovered to their pre-existent functional and mental health level at 3 months after diagnosis

    Nonlinear Pushover Analysis of Concrete Infilled Frames

    No full text
    [[abstract]]Six reinforced concrete frames with or without masonry infi lls were constructed and tested under horizontal cyclic loads. All six frames had identical details in which the transverse reinforcement in columns was provided by rectangular hoops that did not meet current ACI specifi cations for ductile frames. For comparison purposes, the columns in three of these frames were jacketed by carbon-fi ber-reinforced-polymer (CFRP) sheets to avoid possible shear failure. A nonlinear pushover analysis, in which the force-deformation relationships of individual elements were developed based on ACI 318, FEMA 356, and Chen’s model, was carried out for these frames and compared to test results. Both the failure mechanisms and impact of infills on the behaviors of these frames were examined in the study. Conclusions from the present analysis provide structural engineers with valuable information for evaluation and design of infi lled concrete frame building structures.[[notice]]補正完畢[[journaltype]]國外[[incitationindex]]EI[[incitationindex]]SCI[[booktype]]紙本[[countrycodes]]US

    The everchanging pulsating white dwarf GD358

    Get PDF
    We report 323 hours of nearly uninterrupted time series photometric observations of the DBV star GD 358 acquired with the Whole Earth Telescope (WET) during May 23rd to June 8th, 2000. We acquired more than 232 000 independent measurements. We also report on 48 hours of time-series photometric observations in Aug 1996. We detected the non-radial g-modes consistent with degree l = 1 and radial order 8 to 20 and their linear combinations up to 6th order. We also detect, for the first time, a high amplitude l = 2 mode, with a period of 796 s. In the 2000 WET data, the largest amplitude modes are similar to those detected with the WET observations of 1990 and 1994, but the highest combination order previously detected was 4th order. At one point during the 1996 observations, most of the pulsation energy was transferred into the radial order k = 8 mode, which displayed a sinusoidal pulse shape in spite of the large amplitude. The multiplet structure of the individual modes changes from year to year, and during the 2000 observations only the k = 9 mode displays clear normal triplet structure. Even though the pulsation amplitudes change on timescales of days and years, the eigenfrequencies remain essentially the same, showing the stellar structure is not changing on any dynamical timescale

    Whole earth telescope observations of am canum venaticorum-discoseismology at last

    Get PDF
    We report the results of 143.2 hours of time-series photometry over a 12 day period for AM CVn (= HZ 29) as part of the Whole Earth Telescope (WET) project.ˡ This star is believed to be an ultra-short period cataclysmic binary. In the temporal spectrum of the light curve we find a series of 5 harmonically related frequency mo dulations, some with sidebands with a constant frequency spacing of 20.8 μHz always on the high-frequency side. The set of harmonics has a fundamental frequency of 951 μHz. No modulation is detected at this frequency in the light curve. In addition, modulations with frequencies 972.5 and 988.9 μHz are detected with low amplitudes. The structure of the dominant 1903 Hz modulation explains part of the “phase jitter” observed earlier. The amplitude of this peak is modulated with a period of 13.32 ± 0.05 hrs

    Whole earth telescope observations of am canum venaticorum-discoseismology at last

    Get PDF
    We report the results of 143.2 hours of time-series photometry over a 12 day period for AM CVn (= HZ 29) as part of the Whole Earth Telescope (WET) project.ˡ This star is believed to be an ultra-short period cataclysmic binary. In the temporal spectrum of the light curve we find a series of 5 harmonically related frequency mo dulations, some with sidebands with a constant frequency spacing of 20.8 μHz always on the high-frequency side. The set of harmonics has a fundamental frequency of 951 μHz. No modulation is detected at this frequency in the light curve. In addition, modulations with frequencies 972.5 and 988.9 μHz are detected with low amplitudes. The structure of the dominant 1903 Hz modulation explains part of the “phase jitter” observed earlier. The amplitude of this peak is modulated with a period of 13.32 ± 0.05 hrs

    The unusual helium variable AM Canum Venaticorum

    No full text
    The unusual variable star AM CVn has puzzled astronomers for over 40 years. This object, both a photometric and spectroscopic variable, is believed to contain a pair of hydrogen-deficient white dwarfs of extreme mass ratio, transferring material via an accretion disk. We examine the photometric properties of AM CVn, analyzing 289 hours of high-speed photometric data spanning 1976 to 1992. The power spectrum displays significant peaks at 988.7, 1248.8, 1902.5, 2853.8, 3805.2, 4756.5, and 5707.8 μHz (1011.4, 800.8, 525.6, 350.4, 262.8, 210.2, and 175.2 s). We find no detectable power at 951.3 μHz (1051 s), the previously reported main frequency. The 1902.5, 2853.9, and 3805.2 μHz peaks are multiplets, with frequency splitting in each case of 20.77 ± 0.05 μHz. The 1902.5 μHz seasonal pulse shapes are identical, within measurement noise, and maintain the same amplitude and phase as a function of color. We have determined the dominant frequency to be 1902.509802 ± 0.00001 μHz, with p = + 1.71 (±0.04) X 10-11 s s-ˡ. We discuss the implications of these findings on a model forAM CVn
    corecore