337 research outputs found

    Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation

    Full text link
    When a photo-diode is illuminated by a pulse train from a femtosecond laser, it generates microwaves components at the harmonics of the repetition rate within its bandwidth. The phase of these components (relative to the optical pulse train) is known to be dependent on the optical energy per pulse. We present an experimental study of this dependence in InGaAs pin photo-diodes illuminated with ultra-short pulses generated by an Erbium-doped fiber based femtosecond laser. The energy to phase dependence is measured over a large range of impinging pulse energies near and above saturation for two typical detectors, commonly used in optical frequency metrology with femtosecond laser based optical frequency combs. When scanning the optical pulse energy, the coefficient which relates phase variations to energy variations is found to alternate between positive and negative values, with many (for high harmonics of the repetition rate) vanishing points. By operating the system near one of these vanishing points, the typical amplitude noise level of commercial-core fiber-based femtosecond lasers is sufficiently low to generate state-of-the-art ultra-low phase noise microwave signals, virtually immune to amplitude to phase conversion related noise.Comment: 7 pages, 6 figures, submitted to Applied Physics

    A high stability semiconductor laser system for a 88^{88}Sr-based optical lattice clock

    Get PDF
    We describe a frequency stabilized diode laser at 698 nm used for high resolution spectroscopy of the 1S0-3P0 strontium clock transition. For the laser stabilization we use state-of-the-art symmetrically suspended optical cavities optimized for very low thermal noise at room temperature. Two-stage frequency stabilization to high finesse optical cavities results in measured laser frequency noise about a factor of three above the cavity thermal noise between 2 Hz and 11 Hz. With this system, we demonstrate high resolution remote spectroscopy on the 88Sr clock transition by transferring the laser output over a phase-noise-compensated 200 m-long fiber link between two separated laboratories. Our dedicated fiber link ensures a transfer of the optical carrier with frequency stability of 7 \cdot 10^{-18} after 100 s integration time, which could enable the observation of the strontium clock transition with an atomic Q of 10^{14}. Furthermore, with an eye towards the development of transportable optical clocks, we investigate how the complete laser system (laser+optics+cavity) can be influenced by environmental disturbances in terms of both short- and long-term frequency stability.Comment: 9 pages, 9 figures, submitted to Appl. Phys.

    Measurements of Six-Body Hadronic Decays of the D^0 Charmed Meson

    Get PDF
    Using data collected by the FOCUS experiment at Fermilab, we report the discovery of the decay modes D^0 --> K- pi+ pi+ pi+ pi- pi- and D^0 --> pi+ pi+ pi+ pi- pi- pi-. With a sample of 48 +/- 10 reconstructed D^0 --> K- pi+ pi+ pi+ pi- pi- decays and 149 +/- 17 reconstructed D^0 --> pi+ pi+ pi+ pi- pi- pi- decays, we measure the following relative branching ratios: Γ(D0Kπ+π+π+ππ)/Γ(D0Kπ+π+π)=(2.70±0.58±0.38)×103{\Gamma (D^0 \to K^- \pi^+ \pi^+ \pi^+ \pi^- \pi^-) / \Gamma (D^0 \to K^- \pi^+ \pi^+ \pi^-)} = (2.70 \pm 0.58 \pm 0.38) \times 10^{-3} Γ(D0π+π+π+πππ)/Γ(D0Kπ+π+π)=(5.23±0.59±1.35)×103{\Gamma (D^0 \to \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^-) / \Gamma (D^0 \to K^- \pi^+ \pi^+ \pi^-)} = (5.23 \pm 0.59 \pm 1.35) \times 10^{-3} Γ(D0π+π+π+πππ)/Γ(D0Kπ+π+π+ππ)=1.93±0.47±0.48{\Gamma (D^0 \to \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^-) / \Gamma (D^0 \to K^- \pi^+ \pi^+ \pi^+ \pi^- \pi^-)} = 1.93 \pm 0.47 \pm 0.48 The first errors are statistical and the second are systematic. The branching fraction of the Cabibbo suppressed six-body decay mode is measured to be a factor of two higher than the branching fraction of the Cabibbo favored six-body decay mode.Comment: To be submitted to Phys. Lett.

    Measurement of the Ratio of the Vector to Pseudoscalar Charm Semileptonic Decay Rate \Gamma(D+ > ANTI-K*0 mu+ nu)/\Gamma(D+ > ANTI-K0 mu+ nu)

    Full text link
    Using a high statistics sample of photo-produced charm particles from the FOCUS experiment at Fermilab, we report on the measurement of the ratio of semileptonic rates \Gamma(D+ > ANTI-K pi mu+ nu)/\Gamma(D+ > ANTI-K0 mu+ nu)= 0.625 +/- 0.045 +/- 0.034. Allowing for the K pi S-wave interference measured previously by FOCUS, we extract the vector to pseudoscalar ratio \Gamma(D+ > ANTI-K*0 mu+ nu)/\Gamma(D+ > ANTI-K0 mu+ nu)= 0.594 +/- 0.043 +/- 0.033 and the ratio \Gamma(D+ > ANTI-K0 mu+ nu)/\Gamma(D+ > K- pi+ pi+)= 1.019 +/- 0.076 +/- 0.065. Our results show a lower ratio for \Gamma(D > K* \ell nu})/\Gamma(D > K \ell nu) than has been reported recently and indicate the current world average branching fractions for the decays D+ >ANTI-K0(mu+, e+) nu are low. Using the PDG world average for B(D+ > K- pi+ pi+) we extract B(D+ > ANIT-K0 mu+ nu)=(9.27 +/- 0.69 +/- 0.59 +/- 0.61)%.Comment: 15 pages, 1 figur

    Phase- coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link

    Get PDF
    We have explored the performance of two "dark fibers" of a commercial telecommunication fiber link for a remote comparison of optical clocks. The two fibers, linking the Leibniz University of Hanover (LUH) with the Physi-kalisch-Technische Bundesanstalt (PTB) in Braunschweig, are connected in Hanover to form a total fiber length of 146 km. At PTB the performance of an optical frequency standard operating at 456 THz was imprinted to a cw trans-fer laser at 194 THz, and its frequency was transmitted over the fiber. In order to detect and compensate phase noise related to the optical fiber link we have built a low-noise optical fiber interferometer and investigated noise sources that affect the overall performance of the optical link. The frequency stability at the remote end has been measured using the clock laser of PTB's Yb+ frequency standard operating at 344 THz. We show that the frequency of a frequency-stabilized fiber laser can be transmitted over a total fiber length of 146 km with a relative frequency uncertainty below 1E-19, and short term frequency instability given by the fractional Allan deviation of sy(t)=3.3E-15/(t/s)

    Study of the doubly and singly Cabibbo suppressed decays D+ --> K+ pi+ pi- and Ds+ --> K+ pi+ pi-

    Full text link
    Using data collected by the high energy photoproduction experiment FOCUS at Fermilab we study the doubly and singly Cabibbo suppressed decays D+ and Ds+ --> K+ pi+ pi-. Branching ratios and Dalitz plot analyses are performed.Comment: 14 pages, paper to be submitted to Phys.Lett.
    corecore