13 research outputs found

    Origin of strange metallic phase in cuprate superconductors

    Full text link
    The origin of strange metallic phase is shown to exist due to these two conditions---(i) the electrons are strongly interacting such that there are no band and Mott-Hubbard gaps, and (ii) the electronic energy levels are crossed in such a way that there is an electronic energy gap between two energy levels associated to two different wave functions. The theory is also exploited to explain (i) the upward- and downward-shifts in the TT-linear resistivity curves, and (ii) the spectral weight transfer observed in the soft X-ray absorption spectroscopic measurements of the La-Sr-Cu-O Mott insulator.Comment: To be published in J. Supercond. Nov. Mag

    Two dimensional SU(N) x SU(N) chiral models on the lattice

    Full text link
    Lattice SU(N)×SU(N)SU(N)\times SU(N) chiral models are analyzed by strong and weak coupling expansions and by numerical simulations. 12th12^{th} order strong coupling series for the free and internal energy are obtained for all N6N\geq 6. Three loop contributions to the internal energy and to the lattice β\beta-function are evaluated for all NN and non-universal corrections to the asymptotic Λ\Lambda parameter are computed in the ``temperature'' and the ``energy'' scheme. Numerical simulations confirm a faster approach to asymptopia of the energy scheme. A phenomenological correlation between the peak in the specific heat and the dip of the β\beta-function is observed. Tests of scaling are performed for various physical quantities, finding substantial scaling at ξ2\xi \gtrsim 2. In particular, at N=6N=6 three different mass ratios are determined numerically and found in agreement, within statistical errors of about 1\%, with the theoretical predictions from the exact S-matrix theory.Comment: pre-print IFUP 29/93, revised version, 12 pages, 10 figures avaliable on request by FAX or by mail. REVTE

    Stability of self-consistent solutions for the Hubbard model at intermediate and strong coupling

    Full text link
    We present a general framework how to investigate stability of solutions within a single self-consistent renormalization scheme being a parquet-type extension of the Baym-Kadanoff construction of conserving approximations. To obtain a consistent description of one- and two-particle quantities, needed for the stability analysis, we impose equations of motion on the one- as well on the two-particle Green functions simultaneously and introduce approximations in their input, the completely irreducible two-particle vertex. Thereby we do not loose singularities caused by multiple two-particle scatterings. We find a complete set of stability criteria and show that each instability, singularity in a two-particle function, is connected with a symmetry-breaking order parameter, either of density type or anomalous. We explicitly study the Hubbard model at intermediate coupling and demonstrate that approximations with static vertices get unstable before a long-range order or a metal-insulator transition can be reached. We use the parquet approximation and turn it to a workable scheme with dynamical vertex corrections. We derive a qualitatively new theory with two-particle self-consistence, the complexity of which is comparable with FLEX-type approximations. We show that it is the simplest consistent and stable theory being able to describe qualitatively correctly quantum critical points and the transition from weak to strong coupling in correlated electron systems.Comment: REVTeX, 26 pages, 12 PS figure

    Evolution of the electronic structure with size in II-VI semiconductor nanocrystals

    Get PDF
    In order to provide a quantitatively accurate description of the band gap variation with sizes in various II-VI semiconductor nanocrystals, we make use of the recently reported tight-binding parametrization of the corresponding bulk systems. Using the same tight-binding scheme and parameters, we calculate the electronic structure of II-VI nanocrystals in real space with sizes ranging between 5 and 80 {\AA} in diameter. A comparison with available experimental results from the literature shows an excellent agreement over the entire range of sizes.Comment: 17 pages, 4 figures, accepted in Phys. Rev.

    Charged cosmic strings interacting with gravitational and electromagnetic waves

    Full text link
    Under a particular choice of the Ernst potential, we solve analytically the Einstein-Maxwell equations to derive a new exact solution depending on five parameters: the mass, the angular-momentum (per unit mass), the electromagnetic-field strength, k, the parameter-p and the Kerr-NUT parameter, l. This (Petrov Type D) solution is cylindrically-symmetric and represents the curved background around a charged, rotating cosmic string, surrounded by gravitational and electromagnetic waves, under the influence of the Kerr-NUT parameter. A C-energy study in the radiation zone suggests that both the incoming and the outgoing radiation is gravitational, strongly focused around the null direction and preserving its profile. In this case, the absence of the k-parameter from the C-energy implies that, away from the linear defect the electromagnetic field is too weak to contribute to the energy-content of the cylindrically-symmetric space-time under consideration. In order to explain this result, we have evaluated the Weyl and the Maxwell scalars near the axis of the linear defect and at the spatial infinity. Accordingly, we have found that the electromagnetic field is concentrated (mainly) in the vicinity of the axis, while falling-off prominently at large radial distances. However, as long as k differs from unity, the non-zero Kerr-NUT parameter enhances those scalars, both near the axis and at the spatial infinity, introducing some sort of gravitomagnetic contribution.Comment: 18 pages, Springer_Latex, accepted for publication in General Relativity and Gravitatio

    Superstripes and complexity in high-temperature superconductors

    Full text link
    While for many years the lattice, electronic and magnetic complexity of high-temperature superconductors (HTS) has been considered responsible for hindering the search of the mechanism of HTS now the complexity of HTS is proposed to be essential for the quantum mechanism raising the superconducting critical temperature. The complexity is shown by the lattice heterogeneous architecture: a) heterostructures at atomic limit; b) electronic heterogeneity: multiple components in the normal phase; c) superconducting heterogeneity: multiple superconducting gaps in different points of the real space and of the momentum space. The complex phase separation forms an unconventional granular superconductor in a landscape of nanoscale superconducting striped droplets which is called the "superstripes" scenario. The interplay and competition between magnetic orbital charge and lattice fluctuations seems to be essential for the quantum mechanism that suppresses thermal decoherence effects at an optimum inhomogeneity.Comment: 20 pages, 3 figures; J. Supercon. Nov. Mag. 201
    corecore