20 research outputs found

    Glass Transition of Hard Sphere Systems: Molecular Dynamics and Density Functional Theory

    Get PDF
    The glass transition of a hard sphere system is investigated within the framework of the density functional theory (DFT). Molecular dynamics (MD) simulations are performed to study dynamical behavior of the system on the one hand and to provide the data to produce the density field for the DFT on the other hand. Energy landscape analysis based on the DFT shows that there appears a metastable (local) free energy minimum representing an amorphous state as the density is increased. This state turns out to become stable, compared with the uniform liquid, at some density, around which we also observe sharp slowing down of the alphaalpha relaxation in MD simulations.Comment: 5 pages, 5 figure

    Enhanced stability of layered phases in parallel hard-spherocylinders due to the addition of hard spheres

    Full text link
    There is increasing evidence that entropy can induce microphase separation in binary fluid mixtures interacting through hard particle potentials. One such phase consists of alternating two dimensional liquid-like layers of rods and spheres. We study the transition from a uniform miscible state to this ordered state using computer simulations and compare results to experiments and theory. We conclude that (1) there is stable entropy driven microphase separation in mixtures of parallel rods and spheres, (2) adding spheres smaller then the rod length decreases the total volume fraction needed for the formation of a layered phase, therefore small spheres effectively stabilize the layered phase; the opposite is true for large spheres and (3) the degree of this stabilization increases with increasing rod length.Comment: 11 pages, 9 figures. Submitted to Phys. Rev. E. See related website http://www.elsie.brandeis.ed

    The Proton Spin and Flavor Structure in the Chiral Quark Model

    Full text link
    After a pedagogical review of the simple constituent quark model and deep inelastic sum rules, we describe how a quark sea as produced by the emission of internal Goldstone bosons by the valence quarks can account for the observed features of proton spin and flavor structures. Some issues concerning the strange quark content of the nucleon are also discussed.Comment: 59 pages with table of contents, Lecture delivered at the Schladming Winter School (March 1997), to be published by Springer-Verlag under the title "Computing Particle Properties" (eds. C. B. Lang and H. Gausterer

    The capture of K− mesons by complex nuclei

    No full text
    corecore