1,737 research outputs found

    Which mechanism underlies the water-like anomalies in core-softened potentials?

    Full text link
    Using molecular dynamics simulations we investigate the thermodynamic of particles interacting with a continuous and a discrete versions of a core-softened (CS) intermolecular potential composed by a repulsive shoulder. Dynamic and structural properties are also analyzed by the simulations. We show that in the continuous version of the CS potential the density at constant pressure has a maximum for a certain temperature. Similarly the diffusion constant, DD, at a constant temperature has a maximum at a density ρmax\rho_{\mathrm{max}} and a minimum at a density ρmin<ρmax\rho_{\mathrm{min}}<\rho_{\mathrm{max}}, and structural properties are also anomalous. For the discrete CS potential none of these anomalies are observed. The absence of anomalies in the discrete case and its presence in the continuous CS potential are discussed in the framework of the excess entropy.Comment: 8 page

    Flat histogram simulation of lattice polymer systems

    Full text link
    We demonstrate the use of a new algorithm called the Flat Histogram sampling algorithm for the simulation of lattice polymer systems. Thermodynamics properties, such as average energy or entropy and other physical quantities such as end-to-end distance or radius of gyration can be easily calculated using this method. Ground-state energy can also be determined. We also explore the accuracy and limitations of this method. Key words: Monte Carlo algorithms, flat histogram sampling, HP model, lattice polymer systemsComment: 7 RevTeX two-column page

    Fatigue Crack Propagation Rates Prediction Using Probabilistic Strain‐Based Models

    Get PDF
    This chapter proposes an evaluation and extension of the UniGrow model to predict the fatigue crack propagation rate, based on a local strain-based approach to fatigue. The UniGrow model, classified as a residual stress‐based crack propagation model, is here applied to derive probabilistic fatigue crack propagation fields (p-da/dN-ΔK-R fields) for P355NL1 pressure vessel steel, covering distinct stress R-ratios. The results are compared with available experimental data. The required strain-life data are experimentally achieved and evaluated. The material representative element size, ρ*, a key parameter in the UniGrow model, is assessed by means of a trial-and-error procedure of inverse analysis. Moreover, residual stresses are computed for varying crack lengths and minimum-to-maximum stress ratios. Elastoplastic stress fields around the crack apex are evaluated with analytical relations and compared with elastoplastic finite-element (FE) computations. The deterministic strain-life relations proposed in the original UniGrow model are replaced by the probabilistic strain‐life fields (p-ε-N) proposed by Castillo and Canteli. This probabilistic model is also extended by considering a damage parameter to allow for mean stress effects. In particular, a probabilistic Smith-Watson-Topper field (p-SWT-N), alternatively to the conventional p-ε-N field, is proposed and applied to derive the probabilistic fatigue crack propagation fields

    Low Energy Wave Packet Tunneling from a Parabolic Potential Well through a High Potential Barrier

    Full text link
    The problem of wave packet tunneling from a parabolic potential well through a barrier represented by a power potential is considered in the case when the barrier height is much greater than the oscillator ground state energy, and the difference between the average energy of the packet and the nearest oscillator eigenvalue is sufficiently small. The universal Poisson distribution of the partial tunneling rates from the oscillator energy levels is discovered. The explicit expressions for the tunneling rates of different types of packets (coherent, squeezed, even/odd, thermal, etc.) are given in terms of the exponential and modified Bessel functions. The tunneling rates turn out very sensitive to the energy distributions in the packets, and they may exceed significantly the tunneling rate from the energy state with the same average number of quanta.Comment: 14 pages, LaTex type, to appear in Physics Letters

    Maximizing the potency of oxaliplatin coated nanoparticles with folic acid for modulating tumor progression in colorectal cancer

    Get PDF
    One of the challenges of nanotechnology is to improve the efficacy of treatments for diseases, in order to reduce morbidity and mortality rates. Following this line of study, we made a nanoparticle formulation with a small size, uniform surfaces, and a satisfactory encapsulation coefficient as a target for colorectal cancer cells. The results of binding and uptake prove that using the target system with folic acid works: Using this system, cytotoxicity and cell death are increased when compared to using free oxaliplatin. The data show that the system maximized the efficiency of oxaliplatin in modulating tumor progression, increasing apoptosis and decreasing resistance to the drug. Thus, for the first time, our findings suggest that PLGA-PEG-FA increases the antitumor effectiveness of oxaliplatin by functioning as a facilitator of drug delivery in colorectal cancer.Radiolog

    Cholesterol-functionalized carvedilol-loaded PLGA nanoparticles: anti-inflammatory, antioxidant, and antitumor effects

    Get PDF
    The inflammation has been identified as factor of tumor progression, which has increased the interest and use of molecules with anti-inflammatory and antioxidant activities in the cancer treatment. In this study, the antioxidant, anti-inflammatory, and antitumor potentials of carvedilol was explored in a different approach. The cholesterol (CHO) was investigated as facilitated agent in the action of carvedilol-loaded nanoparticles. Different formulations exhibited spherical and stable nanoparticle with mean diameter size < 250 nm. The cholesterol changed the copolymer-drug interactions and the encapsulation efficiency. The in vitro cancer study was performed using murine colorectal cancer cell line (CT-26) to observe the cell viability and apoptosis on MTS assay and flow cytometry, respectively. The experiments have demonstrated that cholesterol improved the performance of drug-loaded nanoparticles, which was much better than free drug. The in vivo inflammation peritonitis model revealed that carvedilol-loaded nanoparticles increased the level of glutathione and leukocyte migration mainly when the functionalized drug-loaded nanoparticles were tested, in a lower dose than the free drug. As hypothesized, the experimental data suggest that cholesterol-functionalized carvedilol-loaded PLGA nanoparticles can be a novel and promising approach in the inflammation-induced cancer therapy since showed anti-inflammatory, antioxidant, and antitumor effects.Graphical abstractRadiolog
    corecore