1,293 research outputs found
Efficient heuristics for two-echelon spare parts inventory systems with an aggregate mean waiting time constraint per local warehouse
This paper presents solution procedures for determining close-to-optimal stocking policies in a multi-item two-echelon spare parts inventory system. The system we consider consists of a central warehouse and a number of local warehouses, and there is a target for the aggregate mean waiting time per local warehouse. We develop four different heuristics and derive a lower bound on the optimal total cost. The effectiveness of each heuristic is assessed by measuring the relative gap between the heuristicâs total cost and the lower bound. The results of the computational experiments show that a greedy procedure performs most satisfactorily. It is accurate as indicated by relatively small gaps, easy to implement, and furthermore, the computational requirements are limited. The computational efficiency can be increased by using Gravesâ approximate evaluation method instead of an exact evaluation method, while the results remain accurate
Study of cutting force and surface roughness on drilling stainless steel 316L under various coolant condition
Drilling is the metal cutting process that are widely used in industrial sector such as in aerospace, automotive and manufacturing to produce a various of durable parts. Stainless steels in general are regarded as difficult to machine materials due to their high tendency to work harden; their toughness and relatively low thermal conductivity. In this research, the experimental setup for the effect of various parameters on drill performance in term of cutting force and surface roughness. Stainless steel 316L used as workpiece and uncoated tungsten carbide drill bit as the tool. From the experimental investigation, the results show that internal coolant with helix angle of 40 and feed rate of 0.1 mm/rev condition is the best drilling condition in term of thrust force and surface roughness. By observation on experiment, MQL coolant condition give highest thrust force while internal coolant is best condition to have most minimum force. For internal coolant, MQL and external supply, the optimum helix angle to obtain low surface roughness is 15° and 40°
Integrated dopaminergic neuronal model with reduced intracellular processes and inhibitory autoreceptors
Dopamine (DA) is an important neurotransmitter for multiple brain functions, and dysfunctions of the dopaminergic system are implicated in neurological and neuropsychiatric disorders. Although the dopaminergic system has been studied at multiple levels, an integrated and efficient computational model that bridges from molecular to neuronal circuit level is still lacking. In this study, the authors aim to develop a realistic yet efficient computational model of a dopaminergic preâsynaptic terminal. They first systematically perturb the variables/substrates of an established computational model of DA synthesis, release and uptake, and based on their relative dynamical timescales and steadyâstate changes, approximate and reduce the model into two versions: one for simulating hourly timescale, and another for millisecond timescale. They show that the original and reduced models exhibit rather similar steady and perturbed states, whereas the reduced models are more computationally efficient and illuminate the underlying key mechanisms. They then incorporate the reduced fast model into a spiking neuronal model that can realistically simulate the spiking behaviour of dopaminergic neurons. In addition, they successfully include autoreceptorâmediated inhibitory current explicitly in the neuronal model. This integrated computational model provides the first step toward an efficient computational platform for realistic multiscale simulation of dopaminergic systems in in silico neuropharmacology
Upper critical field in dirty two-band superconductors: breakdown of the anisotropic Ginzburg-Landau theory
We investigate the upper critical field in a dirty two-band superconductor
within quasiclassical Usadel equations. The regime of very high anisotropy in
the quasi-2D band, relevant for MgB, is considered. We show that strong
disparities in pairing interactions and diffusion constant anisotropies for two
bands influence the in-plane in a different way at high and low
temperatures. This causes temperature-dependent anisotropy, in
accordance with recent experimental data in MgB. The three-dimensional
band most strongly influences the in-plane near , in the
Ginzburg-Landau (GL) region. However, due to a very large difference between
the c-axis coherence lengths in the two bands, the GL theory is applicable only
in an extremely narrow temperature range near . The angular dependence of
deviates from a simple effective-mass law even near .Comment: 12 pages, 5 figures, submitted to Phys.Rev.
Small damping approach in Fermi-liquid theory
The validity of small damping approximation (SDA) for the quasi-classical
description of the averaged properties of nuclei at high temperatures is
studied within the framework of collisional kinetic theory. The isoscalar
collective quadrupole vibrations in hot nuclei are considered. We show that the
extension of the SDA, by accounting for the damping of the distribution
function in the collision integral reduces the rate of variation
with temperature of the Fermi surface distortion effects. The damping of the
in the collision integral increases significantly the collisional
width of the giant quadrupole resonance (GQR) for small enough values of the
relaxation time. The temperature dependence of the eigenenergy of the GQR
becomes much more weaker than in the corresponding SDA case.Comment: 11 pages, 3 figure
Public Sentiment Analysis and Topic Modeling Regarding COVID-19âs Three Waves of Total Lockdown: A Case Study on Movement Control Order in Malaysia
[Abstract] The COVID-19 pandemic has affected many aspects of human life. The pandemic not only caused millions of fatalities and problems but also changed public sentiment and behavior. Owing to the magnitude of this pandemic, governments worldwide adopted full lockdown measures that attracted much discussion on social media platforms. To investigate the effects of these lockdown measures, this study performed sentiment analysis and latent Dirichlet allocation topic modeling on textual data from Twitter published during the three lockdown waves in Malaysia between 2020 and 2021. Three lockdown measures were identified, the related data for the first two weeks of each lockdown were collected and analysed to understand the public sentiment. The changes between these lockdowns were identified, and the latent topics were highlighted. Most of the public sentiment focused on the first lockdown as reflected in the large number of latent topics generated during this period. The overall sentiment for each lockdown was mostly positive, followed by neutral and then negative. Topic modelling results identified staying at home, quarantine and lockdown as the main aspects of discussion for the first lockdown, whilst importance of health measures and government efforts were the main aspects for the second and third lockdowns. Governments may utilise these findings to understand public sentiment and to formulate precautionary measures that can assure the safety of their citizens and tend to their most pressing problems. These results also highlight the importance of positive messaging during difficult times, establishing digital interventions and formulating new policies to improve the reaction of the public to emergency situations.Taiwan. Ministry of Science and Technology; 108-2511-H-224-007-MY
Adhesion of Listeria monocytogenes to materials commonly found in domestic kitchens
The aim of this work was to investigate the adhesion of Listeria monocytogenes ATCC 15313 to glass,
granite, marble, polypropylene from a bowl (PPb), polypropylene from a cutting board (PPcb) and stainless
steel (SS), which are materials commonly used in kitchens. Marble and granite were chosen because they are
applied as kitchen bench covers and pavements in many countries and there are no literature reports on their
behaviour in terms of microbial adhesion. The effect of surface hydrophobicity and roughness on the
adhesion process was also analysed. The results showed that the highest extent of adhesion of
L. monocytogenes occurred to stainless steel, followed by glass and in less extent to the other materials
studied. However, it was not possible to establish a correlation between surface hydrophobicity or roughness
and the extent of adhesion of L. monocytogenes. The adherence of L. monocytogenes should be dependent on
other factors, like the presence of exopolymers and surface charge.Fundação para a CiĂȘncia e a Tecnologia (FCT
Inhomogeneous magnetism induced in a superconductor at superconductor-ferromagnet interface
We study a magnetic proximity effect at superconductor (S) - ferromagnet (F)
interface. It is shown that due to an exchange of electrons between the F and S
metals ferromagnetic correlations extend into the superconductor, being
dependent on interface parameters. We show that ferromagnetic exchange field
pair breaking effect leads to a formation of subgap bands in the S layer local
density of states, that accommodate only one spin-polarized quasiparticles.
Equilibrium magnetization leakage into the S layer as function of SF interface
quality and a value of ferromagnetic interaction have also been calculated. We
show that a damped-oscillatory behavior versus distance from SF interface is a
distinguished feature of the exchange-induced magnetization of the S layer.Comment: 10 pages, 7 Postscript figure
Effective action approach and Carlson-Goldman mode in d-wave superconductors
We theoretically investigate the Carlson-Goldman (CG) mode in two-dimensional
clean d-wave superconductors using the effective ``phase only'' action
formalism. In conventional s-wave superconductors, it is known that the CG mode
is observed as a peak in the structure factor of the pair susceptibility
only just below the transition temperature T_c and only
in dirty systems. On the other hand, our analytical results support the
statement by Y.Ohashi and S.Takada, Phys.Rev.B {\bf 62}, 5971 (2000) that in
d-wave superconductors the CG mode can exist in clean systems down to the much
lower temperatures, . We also consider the manifestations of
the CG mode in the density-density and current-current correlators and discuss
the gauge independence of the obtained results.Comment: 23 pages, RevTeX4, 12 EPS figures; final version to appear in PR
- âŠ