328 research outputs found

    Electron transport and energy relaxation in dilute magnetic alloys

    Full text link
    We consider the effect of the RKKY interaction between magnetic impurities on the electron relaxation rates in a normal metal. The interplay between the RKKY interaction and the Kondo effect may result in a non-monotonic temperature dependence of the electron momentum relaxation rate, which determines the Drude conductivity. The electron phase relaxation rate, which determines the magnitude of the weak localization correction to the resistivity, is also a non-monotonic function of temperature. For this function, we find the dependence of the position of its maximum on the concentration of magnetic impurities. We also relate the electron energy relaxation rate to the excitation spectrum of the system of magnetic impurities. The energy relaxation determines the distribution function for the out-of-equilibrium electrons. Measurement of the electron distribution function thus may provide information about the excitations in the spin glass phase.Comment: 15 pages, 5 figure

    Quantum Disorder and Quantum Chaos in Andreev Billiards

    Full text link
    We investigate the crossover from the semiclassical to the quantum description of electron energy states in a chaotic metal grain connected to a superconductor. We consider the influence of scattering off point impurities (quantum disorder) and of quantum diffraction (quantum chaos) on the electron density of states. We show that both the quantum disorder and the quantum chaos open a gap near the Fermi energy. The size of the gap is determined by the mean free time in disordered systems and by the Ehrenfest time in clean chaotic systems. Particularly, if both times become infinitely large, the density of states is gapless, and if either of these times becomes shorter than the electron escape time, the density of states is described by random matrix theory. Using the Usadel equation, we also study the density of states in a grain connected to a superconductor by a diffusive contact.Comment: 20 pages, 10 figure

    Quantum correction to the Kubo formula in closed mesoscopic systems

    Full text link
    We study the energy dissipation rate in a mesoscopic system described by the parametrically-driven random-matrix Hamiltonian H[\phi(t)] for the case of linear bias \phi=vt. Evolution of the field \phi(t) causes interlevel transitions leading to energy pumping, and also smears the discrete spectrum of the Hamiltonian. For sufficiently fast perturbation this smearing exceeds the mean level spacing and the dissipation rate is given by the Kubo formula. We calculate the quantum correction to the Kubo result that reveals the original discreteness of the energy spectrum. The first correction to the system viscosity scales proportional to v^{-2/3} in the orthogonal case and vanishes in the unitary case.Comment: 4 pages, 3 eps figures, REVTeX

    Fine structure of Vavilov-Cherenkov radiation near the Cherenkov threshold

    Full text link
    We analyze the Vavilov-Cherenkov radiation (VCR) in a dispersive nontransparent dielectric air-like medium both below and above the Cherenkov threshold, in the framework of classical electrodynamics. It is shown that the transition to the subthreshold energies leads to the destruction of electromagnetic shock waves and to the sharp reduction of the frequency domain where VCR is emitted. The fine wake-like structure of the Vavilov-Cherenkov radiation survives and manifests the existence of the subthreshold radiation in the domain of anomalous dispersion. These domains can approximately be defined by the two phenomenological parameters of the medium, namely, the effective frequency of oscillators and the damping describing an interaction with the other degrees of freedom.Comment: 9 pages, 6 figure

    Quantum interference and the formation of the proximity effect in chaotic normal-metal/superconducting structures

    Full text link
    We discuss a number of basic physical mechanisms relevant to the formation of the proximity effect in superconductor/normal metal (SN) systems. Specifically, we review why the proximity effect sharply discriminates between systems with integrable and chaotic dynamics, respectively, and how this feature can be incorporated into theories of SN systems. Turning to less well investigated terrain, we discuss the impact of quantum diffractive scattering on the structure of the density of states in the normal region. We consider ballistic systems weakly disordered by pointlike impurities as a test case and demonstrate that diffractive processes akin to normal metal weak localization lead to the formation of a hard spectral gap -- a hallmark of SN systems with chaotic dynamics. Turning to the more difficult case of clean systems with chaotic boundary scattering, we argue that semiclassical approaches, based on classifications in terms of classical trajectories, cannot explain the gap phenomenon. Employing an alternative formalism based on elements of quasiclassics and the ballistic σ\sigma-model, we demonstrate that the inverse of the so-called Ehrenfest time is the relevant energy scale in this context. We discuss some fundamental difficulties related to the formulation of low energy theories of mesoscopic chaotic systems in general and how they prevent us from analysing the gap structure in a rigorous manner. Given these difficulties, we argue that the proximity effect represents a basic and challenging test phenomenon for theories of quantum chaotic systems.Comment: 21 pages (two-column), 6 figures; references adde

    Conductance of Mesoscopic Systems with Magnetic Impurities

    Full text link
    We investigate the combined effects of magnetic impurities and applied magnetic field on the interference contribution to the conductance of disordered metals. We show that in a metal with weak spin-orbit interaction, the polarization of impurity spins reduces the rate of electron phase relaxation, thus enhancing the weak localization correction to conductivity. Magnetic field also suppresses thermal fluctuations of magnetic impurities, leading to a recovery of the conductance fluctuations. This recovery occurs regardless the strength of the spin-orbit interaction. We calculate the magnitudes of the weak localization correction and of the mesoscopic conductance fluctuations at an arbitrary level of the spin polarization induced by a magnetic field. Our analytical results for the ``h/eh/e'' Aharonov-Bohm conductance oscillations in metal rings can be used to extract spin and gyromagnetic factor of magnetic impurities from existing experimental data.Comment: 18 pages, 8 figure

    Gap Fluctuations in Inhomogeneous Superconductors

    Full text link
    Spatial fluctuations of the effective pairing interaction between electrons in a superconductor induce variations of the order parameter which in turn lead to significant changes in the density of states. In addition to an overall reduction of the quasi-particle energy gap, theory suggests that mesoscopic fluctuations of the impurity potential induce localised tail states below the mean-field gap edge. Using a field theoretic approach, we elucidate the nature of the states in the `sub-gap' region. Specifically, we show that these states are associated with replica symmetry broken instanton solutions of the mean-field equations.Comment: 11 pages, 3 figures included. To be published in PRB (Sept. 2001

    Measurement of the Ds lifetime

    Get PDF
    We report precise measurement of the Ds meson lifetime. The data were taken by the SELEX experiment (E781) spectrometer using 600 GeV/c Sigma-, pi- and p beams. The measurement has been done using 918 reconstructed Ds. The lifetime of the Ds is measured to be 472.5 +- 17.2 +- 6.6 fs, using K*(892)0K+- and phi pi+- decay modes. The lifetime ratio of Ds to D0 is 1.145+-0.049.Comment: 5 pages, 2 figures submitted to Phys. Lett.

    Confirmation of the Double Charm Baryon Xi_cc+ via its Decay to p D+ K-

    Get PDF
    We observes a signal for the double charm baryon Xi_cc+ in the charged decay mode Xi_cc+ -> p D+ K- to complement the previously reported decay Xi_cc+ -> Lambda_c K- pi+ in data from SELEX, the charm hadro-production experiment (E781) at Fermilab. In this new decay mode we observe an excess of 5.62 events over an expected background estimated by event mixing to be 1.38+/-0.13 events. The Poisson probability that a background fluctuation can produce the apparent signal is less than 6.4E-4. The observed mass of this state is (3518+/-3)MeV/c^2, consistent with the published result. Averaging the two results gives a mass of (3518.7+/-1.7)MeV/c^2. The observation of this new weak decay mode confirms the previous SELEX suggestion that this state is a double charm baryon. The relative branching ratio Gamma(Xi_cc+ -> pD+K-)/Gamma(Xi_cc+ -> Lambda_c K- pi+) = 0.36+/-0.21.Comment: 11 pages, 6 included eps figures. v2 includes improved statistical method to determine significance of observation. Submitted to PL
    corecore