14 research outputs found

    Analytical, circle-to-circle low-thrust transfer trajectories with plane change

    Get PDF
    Orbit averaging techniques are used to develop analytical approximations of circle-to-circle low-thrust trajectory transfers with plane-change about the Sun. Separate expressions are developed for constant acceleration, or thrust, electric propulsion, solar sail propulsion and combined, or hybrid electric (constant acceleration or thrust) / solar sail propulsion. The analytical expressions uniquely allow the structure of circle-to-circle low-thrust trajectory transfers with plane-change about the Sun to be understood, and the optimal trajectory structure is analytically derived for each propulsion system considered. It is found that the optimal fixed thrust electric propulsion transfer reduces the orbit radius with no plane change and then performs the plane-change, while the optimal solar sail and hybrid transfers combine the reduction of orbit radius with some plane change, before then completing the plane change. The optimal level of plane change during the reduction of orbit radius is derived and it is found the analytically-derived minimum time solar sail transfer is within 1% of the numerically-derived optimal transfer. It is also found that, under the conditions considered, a sail characteristic acceleration of less than 0.5 mm/s2 can, in 5-years, attain a solar orbit that maintains the observer-to-solar pole zenith angle below 40 degrees for 25 days; the approximate sidereal rotation period of the Sun. However, a sail characteristic acceleration of more than 0.5 mm/s2 is required to attain an observer-to-solar pole zenith angle below 30 degrees for 25 days within 5-years of launch. Finally, it was found that the hybridization of electric propulsion and solar sail propulsion was, typically, of more benefit when the system was thrust constrained than when it was mass constrained

    Artificial Equilibrium Points for a Generalized Sail in the Circular Restricted Three-Body Problem

    No full text
    International audienceThis paper introduces a new approach to the study of artificial equilibrium points in the circular restricted three-body problem for propulsion systems with continuous and purely radial thrust. The propulsion system is described by means of a general mathematical model that encompasses the behavior of different systems like a solar sail, a magnetic sail and an electric sail. The proposed model is based on the choice of a coefficient related to the propulsion type and a performance parameter that quantifies the system technological complexity. The propulsion system is therefore referred to as generalized sail. The existence of artificial equilibrium points for a generalized sail is investigated. It is shown that three different families of equilibrium points exist, and their characteristic locus is described geometrically by varying the value of the performance parameter. The linear stability of the artificial points is also discussed

    Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated macrophages.

    Get PDF
    Dysregulated adipocyte physiology leads to imbalanced energy storage, obesity, and associated diseases, imposing a costly burden on current health care. Cannabinoid receptor type-1 (CB1) plays a crucial role in controlling energy metabolism through central and peripheral mechanisms. In this work, adipocyte-specific inducible deletion of the CB1 gene (Ati-CB1- KO) was sufficient to protect adult mice from diet-induced obesity and associated metabolic alterations and to reverse the phenotype in already obese mice. Compared with controls, Ati-CB1-KO mice showed decreased body weight, reduced total adiposity, improved insulin sensitivity, enhanced energy expenditure, and fat depot-specific cellular remodeling toward lowered energy storage capacity and browning of white adipocytes. These changes were associated with an increase in alternatively activated macrophages concomitant with enhanced sympathetic tone in adipose tissue. Remarkably, these alterations preceded the appearance of differences in body weight, highlighting the causal relation between the loss of CB1 and the triggering of metabolic reprogramming in adipose tissues. Finally, the lean phenotype of Ati-CB1-KO mice and the increase in alternatively activated macrophages in adipose tissue were also present at thermoneutral conditions. Our data provide compelling evidence for a crosstalk among adipocytes, immune cells, and the sympathetic nervous system (SNS), wherein CB1 plays a key regulatory role

    Modulatory Effects of Food Restriction on Brain and Behavioral Effects of Abused Drugs

    No full text
    corecore