18 research outputs found
Para to Ortho transition of metallic dimers on Si(001)
Extensive electronic structure calculations are performed to obtain the
stable geometries of metals like Al, Ga and In on the Si(001) surface at 0.5 ML
and 1 ML coverages. Our results coupled with previous theoretical findings
explain the recent experimental data in a comprehensive fashion. At low
coverages, as shown by previous works, `Para' dimers give the lowest energy
structure. With increasing coverage beyond 0.5 ML, `Ortho' dimers become part
of low energy configurations leading toward a `Para' to `Ortho' transition at 1
ML coverage. For In mixed staggered dimers (`Ortho' and `Para') give the lowest
energy configuration. For Ga, mixed dimers are non-staggered, while for Al
`Para' to `Ortho' transition of dimers is complete. Thus at intermediate
coverages between 0.5 and 1 ML, the `Ortho' and `Para' dimers may coexist on
the surface. Consequently, this may be an explanation of the fact that the
experimental observations can be successfully interpreted using either
orientation. A supported zigzag structure at 0.5 ML, which resembles , does not undergo a dimerization transition, and hence stays
semi-metallic. Also, unlike the soliton formation is ruled out
for this structure.Comment: 8 pages, 6 figure
Recommended from our members
Defect reduction in (112_O) a-plane GaN by two-stage epitaxial lateral overgrowth
In the epitaxial lateral overgrowth (ELO) of (11{bar 2}0) a-plane GaN, the uneven growth rates of two opposing wings, Ga- and N-wings, makes the coalescence of two neighboring wings more difficult than that in c-plane GaN. We report a two-stage growth method to get uniformly coalesced epitaxial lateral overgrown a-plane GaN using metalorganic chemical vapor deposition (MOCVD) by employing relatively lower growth temperature in the first step followed by enhanced lateral growth in the second. Using this method, the height differences between Ga-polar and N-polar wings at the coalescence front could be reduced, thereby making the coalescence of two wings much easier. Transmission electron microscopy (TEM) showed that the threading dislocation density in the wing areas was 1.0x10{sup 8}cm{sup -2}, more than two orders of magnitude lower than that in the window areas (4.2x10{sup 10}cm{sup -2}). However, high density of basal stacking faults of 1.2x104 cm-1 was still observed in the wing areas as compared to c-plane GaN. Atomic force microscopy and photoluminescence measurements on the coalesced ELO a-GaN sample also indicated improved material quality
Scanning tunnelling luminescence studies of nitride semiconductor thin films under ambient conditions
We have investigated the properties of a commercial light-emitting diode (LED) structure containing an InGaN single quantum well (SQW) by scanning tunneling luminescence (STL). Data was acquired under ambient conditions, i.e., in air and at room temperature, using our unique STL microscope with a novel light collection geometry. Scanning tunneling microscopy (STM) images revealed the presence of hexagonal pits in the structure, with STL images showing strong luminescence from these pits. The variation of STL intensity with bias voltage shows the STL threshold at --2.1 V is numerically similar to the peak position of the SQW luminescence band. A slight shoulder at --2.8V corresponds to the plateau of the delocalised absorption profile, observed in macroscopic measurements. The peak observed at --3.2 V is close to the observed GaN band edge emission