1,604 research outputs found

    Nextprot: the new human protein knowledge resource

    Get PDF
    Comunicaciones a congreso

    Distance, dissimilarity index, and network community structure

    Full text link
    We address the question of finding the community structure of a complex network. In an earlier effort [H. Zhou, {\em Phys. Rev. E} (2003)], the concept of network random walking is introduced and a distance measure defined. Here we calculate, based on this distance measure, the dissimilarity index between nearest-neighboring vertices of a network and design an algorithm to partition these vertices into communities that are hierarchically organized. Each community is characterized by an upper and a lower dissimilarity threshold. The algorithm is applied to several artificial and real-world networks, and excellent results are obtained. In the case of artificially generated random modular networks, this method outperforms the algorithm based on the concept of edge betweenness centrality. For yeast's protein-protein interaction network, we are able to identify many clusters that have well defined biological functions.Comment: 10 pages, 7 figures, REVTeX4 forma

    Network Landscape from a Brownian Particle's Perspective

    Full text link
    Given a complex biological or social network, how many clusters should it be decomposed into? We define the distance di,jd_{i,j} from node ii to node jj as the average number of steps a Brownian particle takes to reach jj from ii. Node jj is a global attractor of ii if di,jdi,kd_{i,j}\leq d_{i,k} for any kk of the graph; it is a local attractor of ii, if jEij\in E_i (the set of nearest-neighbors of ii) and di,jdi,ld_{i,j}\leq d_{i,l} for any lEil\in E_i. Based on the intuition that each node should have a high probability to be in the same community as its global (local) attractor on the global (local) scale, we present a simple method to uncover a network's community structure. This method is applied to several real networks and some discussion on its possible extensions is made.Comment: 5 pages, 4 color-figures. REVTeX 4 format. To appear in PR

    Identification of Amino Acid Sequences with Good Folding Properties in an Off-Lattice Model

    Full text link
    Folding properties of a two-dimensional toy protein model containing only two amino-acid types, hydrophobic and hydrophilic, respectively, are analyzed. An efficient Monte Carlo procedure is employed to ensure that the ground states are found. The thermodynamic properties are found to be strongly sequence dependent in contrast to the kinetic ones. Hence, criteria for good folders are defined entirely in terms of thermodynamic fluctuations. With these criteria sequence patterns that fold well are isolated. For 300 chains with 20 randomly chosen binary residues approximately 10% meet these criteria. Also, an analysis is performed by means of statistical and artificial neural network methods from which it is concluded that the folding properties can be predicted to a certain degree given the binary numbers characterizing the sequences.Comment: 15 pages, 8 Postscript figures. Minor change

    The 20 years of PROSITE

    Get PDF
    PROSITE consists of documentation entries describing protein domains, families and functional sites, as well as associated patterns and profiles to identify them. It is complemented by ProRule, a collection of rules based on profiles and patterns, which increases the discriminatory power of profiles and patterns by providing additional information about functionally and/or structurally critical amino acids. In this article, we describe the implementation of a new method to assign a status to pattern matches, the new PROSITE web page and a new approach to improve the specificity and sensitivity of PROSITE methods. The latest version of PROSITE (release 20.19 of 11 September 2007) contains 1319 patterns, 745 profiles and 764 ProRules. Over the past 2 years, about 200 domains have been added, and now 53% of UniProtKB/Swiss-Prot entries (release 54.2 of 11 September 2007) have a PROSITE match. PROSITE is available on the web at: http://www.expasy.org/prosit

    Protein folding using contact maps

    Full text link
    We present the development of the idea to use dynamics in the space of contact maps as a computational approach to the protein folding problem. We first introduce two important technical ingredients, the reconstruction of a three dimensional conformation from a contact map and the Monte Carlo dynamics in contact map space. We then discuss two approximations to the free energy of the contact maps and a method to derive energy parameters based on perceptron learning. Finally we present results, first for predictions based on threading and then for energy minimization of crambin and of a set of 6 immunoglobulins. The main result is that we proved that the two simple approximations we studied for the free energy are not suitable for protein folding. Perspectives are discussed in the last section.Comment: 29 pages, 10 figure

    ProRule: a new database containing functional and structural information on PROSITE profiles

    Get PDF
    Motivation: Increase the discriminatory power of PROSITE profiles to facilitate function determination and provide biologically relevant information about domains detected by profiles for the annotation of proteins. Summary: We have created a new database, ProRule, which contains additional information about PROSITE profiles. ProRule contains notably the position of structurally and/or functionally critical amino acids, as well as the condition they must fulfill to play their biological role. These supplementary data should help function determination and annotation of the UniProt Swiss-Prot knowledgebase. ProRule also contains information about the domain detected by the profile in the Swiss-Prot line format. Hence, ProRule can be used to make Swiss-Prot annotation more homogeneous and consistent. The format of ProRule can be extended to provide information about combination of domains. Availability: ProRule can be accessed through ScanProsite at http://www.expasy.org/tools/scanprosite. A file containing the rules will be made available under the PROSITE copyright conditions on our ftp site (ftp://www.expasy.org/databases/prosite/) by the next PROSITE release. Contact: [email protected]

    ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins

    Get PDF
    ScanProsite—http://www.expasy.org/tools/scanprosite/—is a new and improved version of the web-based tool for detecting PROSITE signature matches in protein sequences. For a number of PROSITE profiles, the tool now makes use of ProRules—context-dependent annotation templates—to detect functional and structural intra-domain residues. The detection of those features enhances the power of function prediction based on profiles. Both user-defined sequences and sequences from the UniProt Knowledgebase can be matched against custom patterns, or against PROSITE signatures. To improve response times, matches of sequences from UniProtKB against PROSITE signatures are now retrieved from a pre-computed match database. Several output modes are available including simple text views and a rich mode providing an interactive match and feature viewer with a graphical representation of result

    Recent improvements to the PROSITE database

    Get PDF
    The PROSITE database consists of a large collection of biologically meaningful signatures that are described as patterns or profiles. Each signature is linked to documentation that provides useful biological information on the protein family, domain or functional site identified by the signature. The PROSITE web page has been redesigned and several tools have been implemented to help the user discover new conserved regions in their own proteins and to visualize domain arrangements. We also introduced the facility to search PDB with a PROSITE entry or a user's pattern and visualize matched positions on 3D structures. The latest version of PROSITE (release 18.17 of November 30, 2003) contains 1676 entries. The database is accessible at http://www.expasy.org/prosit

    Composite structural motifs of binding sites for delineating biological functions of proteins

    Get PDF
    Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs which represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures.Comment: 34 pages, 7 figure
    corecore