333 research outputs found

    Oxidative Stress-Induced STIM2 Cysteine Modifications Suppress Store-Operated Calcium Entry

    Get PDF
    Store-operated calcium entry (SOCE) through STIM-gated ORAI channels governs vital cellular functions. In this context, SOCE controls cellular redox signaling and is itself regulated by redox modifications. However, the molecular mechanisms underlying this calcium-redox interplay and the functional outcomes are not fully understood. Here, we examine the role of STIM2 in SOCE redox regulation. Redox proteomics identify cysteine 313 as the main redox sensor of STIM2 in vitro and in vivo. Oxidative stress suppresses SOCE and calcium currents in cells overexpressing STIM2 and ORAI1, an effect that is abolished by mutation of cysteine 313. FLIM and FRET microscopy, together with MD simulations, indicate that oxidative modifications of cysteine 313 alter STIM2 activation dynamics and thereby hinder STIM2-mediated gating of ORAI1. In summary, this study establishes STIM2-controlled redox regulation of SOCE as a mechanism that affects several calcium-regulated physiological processes, as well as stress-induced pathologies

    Radiation hybrid map spanning the huntington disease gene region of chromosome 4

    Full text link
    Radiation hybrid (RH) mapping was used to construct a map of 11 markers in the distal 4 Mb of the short arm of chromosome 4, the region containing the Huntington disease gene. Two different methods for deriving the order of the markers were compared and both arrived at the same order as being the most likely. This order is also consistent with both the physical map constructed using pulsed-field gel electrophoresis (PFGE) and the meiotic linkage map. Comparing the RH map to the map determined by PFGE provided the means to equate RH map units (centirays) with actual physical distance in kilobases of DNA. In addition, a simple procedure for reducing the complexity of human DNA in radiation hybrids is described. One cell line isolated using this procedure contains, as its only human DNA, ~2 Mb surrounding the Huntington disease gene.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29937/1/0000294.pd

    Pharmacologic modulation of experimentally induced allergic asthma

    Get PDF
    Allergic asthma is the most frequent disease of the respiratory tract. The aim of the current experimental and clinical studies was to find new sources of drugs able to control asthmatic inflammation and airway hyperresponsiveness. Our experimental studies were focused on efficiency evaluation of substances able to influence activities of ion channels, phosphodiesterase (PDE) isoforms, substances from the group of polyphenols and NO metabolism modulators during experimentally induced allergic asthma

    Partial genomic survival of cave bears in living brown bears

    Get PDF
    Although many large mammal species went extinct at the end of the Pleistocene epoch, their DNA may persist due to past episodes of interspecies admixture. However, direct empirical evidence of the persistence of ancient alleles remains scarce. Here, we present multifold coverage genomic data from four Late Pleistocene cave bears (Ursus spelaeus complex) and show that cave bears hybridized with brown bears (Ursus arctos) during the Pleistocene. We develop an approach to assess both the directionality and relative timing of gene flow. We find that segments of cave bear DNA still persist in the genomes of living brown bears, with cave bears contributing 0.9 to 2.4% of the genomes of all brown bears investigated. Our results show that even though extinction is typically considered as absolute, following admixture, fragments of the gene pool of extinct species can survive for tens of thousands of years in the genomes of extant recipient species

    Genomic organization, sequence analysis and expression of all five genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from tomato

    Full text link
    We have cloned and sequenced all five members of the gene family for the small subunit (rbcS) of ribulose-1,5-bisphosphate carboxylase/oxygenase from tomato, Lycopersicon esculentum cv. VFNT LA 1221 cherry line. Two of the five genes, designated Rbcs-1 and Rbcs-2 , are present as single genes at individual loci. Three genes, designated Rbcs-3A, Rbcs-3B and Rbcs-3C , are organized in a tandem array within 10 kb at a third independent locus. The Rbcs-2 gene contains three introns; all the other members of the tomato gene family contain two introns. The coding sequence of Rbcs-1 differs by 14.0% from that of Rbcs-2 and by 13.3% from that of Rbcs-3 genes. Rbcs-2 shows 10.4% divergence from Rbcs-3 . The exon and intron sequences of Rbcs-3A are identical to those of Rbcs-3C , and differ by 1.9% from those of Rbcs-3B . Nucleotide sequence analysis suggests that the five rbcS genes encode four different precursors, and three different mature polypeptides. S 1 nuclease mapping of the 5′ end of rbcS mRNAs revealed that the mRNA leader sequences vary in length from 8 to 75 nucleotides. Northern analysis using gene-specific oligonucleotide probes from the 3′ non-coding region of each gene reveals a four to five-fold difference among the five genes in maximal steady-state mRNA levels in leaves.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47566/1/438_2004_Article_BF00329650.pd

    A subcloning strategy for DNA sequence analysis.

    No full text
    We describe here a new strategy of fragment preparation for sequencing procedures using endlabelled DNA fragments as substrates (2,3) which is directly applicable to DNA fragments cloned into the Pst I site of pBR322, or in modified form, to inserts into the BamH I or Sal I site of the same plasmid. Ordered sets of subclones of predetermined overlap are are generated. These can be sequenced directly without further strand- or fragment separation steps
    corecore