211 research outputs found
Microbial single-cell omics: the crux of the matter
Single-cell genomics and transcriptomics can provide reliable context for assembled genome fragments and gene expression activity on the level of individual prokaryotic genomes. These methods are rapidly emerging as an essential complement to cultivation-based, metagenomics, metatranscriptomics, and microbial community-focused research approaches by allowing direct access to information from individual microorganisms, even from deep-branching phylogenetic groups that currently lack cultured representatives. Their integration and binning with environmental ‘omics data already provides unprecedented insights into microbial diversity and metabolic potential, enabling us to provide information on individual organisms and the structure and dynamics of natural microbial populations in complex environments. This review highlights the pitfalls and recent advances in the field of single-cell omics and its importance in microbiological and biotechnological studies
Updates to the recently introduced family Lacipirellulaceae in the phylum Planctomycetes: isolation of strains belonsging to the novel genera Aeoliella, Botrimarina, Pirellulimonas and Pseudobythopirellula and the novel species Bythopirellula polymerisocia and Posidoniimonas corsicana
Eight novel strains of the phylum Planctomycetes were isolated from different aquatic habitats. Among these habitats were the hydrothermal vent system close to Panarea Island, a public beach at Mallorca Island, the shore of Costa Brava (Spain), and three sites with brackish water in the Baltic Sea. The genome sizes of the novel strains range from 4.33 to 6.29 Mb with DNA G+C contents between 52.8 and 66.7%. All strains are mesophilic (Topt 24–30 °C) and display generation times between 17 and 94 h. All eight isolates constitute novel species of either already described or novel genera within the family Lacipirellulaceae. Two of the novel species, Posidoniimonas polymericola (type strain Pla123a = DSM 103020 = LMG 29466) and Bythopirellula polymerisocia (type strain Pla144 = DSM 104841 = VKM B-3442), belong to established genera, while the other strains represent the novel genera Aeoliella gen. nov., Botrimarina gen. nov., Pirellulimonas gen. nov. and Pseudobythopirellula gen. nov. Based on our polyphasic analysis, we propose the species Aeoliella mucimassa sp. nov. (type strain Pan181 = DSM 29370 = LMG 31346 = CECT 9840 = VKM B-3426), Botrimarina colliarenosi sp. nov. (type strain Pla108 = DSM 103355 = LMG 29803), Botrimarina hoheduenensis sp. nov. (type strain Pla111 = DSM 103485 = STH00945, Jena Microbial Resource Collection JMRC), Botrimarina mediterranea sp. nov. (type strain Spa11 = DSM 100745 = LMG 31350 = CECT 9852 = VKM B-3431), Pirellulimonas nuda sp. nov. (type strain Pla175 = DSM 109594 = CECT 9871 = VKM B-3448) and Pseudobythopirellula maris sp. nov. (type strain Mal64 = DSM 100832 = LMG 29020)
Additions to the genus Gimesia: description of Gimesia alba sp. nov., Gimesia algae sp. nov., Gimesia aquarii sp. nov., Gimesia aquatilis sp. nov., Gimesia fumaroli sp. nov. and Gimesia panareensis sp. nov., isolated from aquatic habitats of the Northern Hemisphere
Thirteen novel planctomycetal strains were isolated from five different aquatic sampling locations. These comprise the hydrothermal vent system close to Panarea Island (Italy), a biofilm on the surface of kelp at Monterey Bay (CA, USA), sediment and algae on Mallorca Island (Spain) and Helgoland Island (Germany), as well as a seawater aquarium in Braunschweig, Germany. All strains were shown to belong to the genus Gimesia. Their genomes cover a size range from 7.22 to 8.29 Mb and have a G+C content between 45.1 and 53.7%. All strains are mesophilic (Topt 26-33 °C) with generation times between 12 and 32 h. Analysis of fatty acids yielded palmitic acid (16:0) and a fatty acid with the equivalent chain length of 15.817 as major compounds. While five of the novel strains belong to the already described species Gimesia maris and Gimesia chilikensis, the other strains belong to novel species, for which we propose the names Gimesia alba (type strain Pan241wT = DSM 100744T = LMG 31345T = CECT 9841T = VKM B-3430T), Gimesia algae (type strain Pan161T = CECT 30192T = STH00943T = LMG 29130T), Gimesia aquarii (type strain V144T = DSM 101710T = VKM B-3433T), Gimesia fumaroli (type strain Enr17T = DSM 100710T = VKM B-3429T) and Gimesia panareensis (type strain Enr10T = DSM 100416T = LMG 29082T). STH numbers refer to the Jena Microbial Resource Collection (JMRC)
Effect of glyphosate, its metabolite AMPA, and the glyphosate formulation Roundup® on brown trout (Salmo trutta f. fario) gut microbiome diversity
Glyphosate is used worldwide as a compound of pesticides and is detectable in many environmental compartments. It enters water bodies primarily through drift from agricultural areas so that aquatic organisms are exposed to this chemical, especially after rain events. Glyphosate is advertised and sold as a highly specific herbicide, which interacts with the EPSP synthase, an enzyme of the shikimate metabolism, resulting in inhibition of the synthesis of vital aromatic amino acids. However, not only plants but also bacteria can possess this enzyme so that influences of glyphosate on the microbiomes of exposed organisms cannot be excluded. Those influences may result in subtle and long-term effects, e.g., disturbance of the symbiotic interactions of bionts with microorganisms of their microbiomes. Mechanisms how the transformation product aminomethylphosphonic acid (AMPA) of glyphosate might interfere in this context have not understood so far. In the present study, molecular biological fingerprinting methods showed concentration-dependent effects of glyphosate and AMPA on fish microbiomes. In addition, age-dependent differences in the composition of the microbiomes regarding abundance and diversity were detected. Furthermore, the effect of exposure to glyphosate and AMPA was investigated for several fish pathogens of gut microbiomes in terms of their gene expression of virulence factors associated with pathogenicity. In vitro transcriptome analysis with the fish pathogen Yersinia ruckeri revealed that it is questionable whether the observed effect on the microbiome is caused by the intended mode of action of glyphosate, such as the inhibition of EPSP synthase activity
A deeply branching thermophilic bacterium with an ancient acetyl-CoA pathway dominates a subsurface ecosystem
<div><p>A nearly complete genome sequence of <em>Candidatus</em> ‘Acetothermum autotrophicum’, a presently uncultivated bacterium in candidate division OP1, was revealed by metagenomic analysis of a subsurface thermophilic microbial mat community. Phylogenetic analysis based on the concatenated sequences of proteins common among 367 prokaryotes suggests that <em>Ca.</em> ‘A. autotrophicum’ is one of the earliest diverging bacterial lineages. It possesses a folate-dependent Wood-Ljungdahl (acetyl-CoA) pathway of CO<sub>2</sub> fixation, is predicted to have an acetogenic lifestyle, and possesses the newly discovered archaeal-autotrophic type of bifunctional fructose 1,6-bisphosphate aldolase/phosphatase. A phylogenetic analysis of the core gene cluster of the acethyl-CoA pathway, shared by acetogens, methanogens, some sulfur- and iron-reducers and dechlorinators, supports the hypothesis that the core gene cluster of <em>Ca.</em> ‘A. autotrophicum’ is a particularly ancient bacterial pathway. The habitat, physiology and phylogenetic position of <em>Ca.</em> ‘A. autotrophicum’ support the view that the first bacterial and archaeal lineages were H<sub>2</sub>-dependent acetogens and methanogenes living in hydrothermal environments.</p> </div
BRS Pérola: cultivar de soja indicada para o Maranhão, Piauí e Tocantins.
Cultivares de soja com elevado potencial produtivo são requeridas todos os anos pelos agricultores. A Embrapa Soja vem desenvolvendo cultivares de soja produtivas e adaptadas às diferentes regiões edafoclimáticas do Brasil. O objetivo deste trabalho é apresentar a cultivar BRS Pérola, desenvolvida pela Embrapa Soja em convênio com a Fapcen, indicada para o cultivo nos estados do Maranhão, norte do Tocantins e sudoeste do Piauí. A BRS Pérola é uma cultivar de soja convencional, do grupo de maturidade relativo 8.8, tipo de crescimento determinado, flor branca, pubescência marrom médio e cor de hilo marrom. Nas safras 2007/08, 2008/09, 2009/10 e 2010/11 ela foi avaliada em experimentos de Valor de Cultivo e Uso em diferentes locais no MA, PI, TO, decidindo-se então pelo seu lançamento. A cultivar apresenta elevado potencial produtivo, ficando acima das três cultivares testemunhas utilizadas nos experimentos (BRS Tracajá, M-Soy 8866 e P98C81), com rendimento médio de 3.652 kg/ha, ao passo que a média das testemunhas foi de 3.436 kg/ha, indicando ainda resistência às principais doenças da soja e estabilidade na altura de plantas, proporcionando a sua semeadura em áreas de baixas altitudes. A BRS Pérola é uma excelente opção de cultivar de soja convencional para o mercado
Sildenafil, a phosphodiesterase type 5 inhibitor, enhances the antidepressant activity of amitriptyline but not desipramine, in the forced swim test in mice
The cholinergic theory of depression highlights the involvement of muscarinic acetylcholine receptors in the neurobiology of mood disorders. The present study was designed to investigate the effect of sildenafil, a phosphodiesterase type 5 inhibitor which exhibits cholinomimetic properties, alone and in combination with scopolamine in the forced swim test in mice. Moreover, we assessed the ability of sildenafil to modify the antidepressant activity of two tricyclic antidepressants with distinct cholinolytic activity, amitriptyline and desipramine. Swim sessions were conducted by placing mice in glass cylinders filled with water for 6 min and the duration of behavioral immobility during the last 4 min of the test was evaluated. Locomotor activity was measured with photoresistor actimeters. To evaluate the potential pharmacokinetic interaction between amitriptyline and sildenafil, brain and serum concentrations of amitriptyline were determined by HPLC. Sildenafil (1.25–20 mg/kg) as well as scopolamine (0.5 mg/kg) and its combination with sildenafil (1.25 mg/kg) did not affect the total immobility time duration. However, joint administration of scopolamine with sildenafil at doses of 2.5 and 5 mg/kg significantly reduced immobility time as compared to control group. Moreover, co-administration of scopolamine with sildenafil at the highest dose (5 mg/kg) significantly decreased immobility time as compared to scopolamine-treated group. Sildenafil (1.25, 2.5 and 5 mg/kg) significantly enhanced the antidepressant activity of amitriptyline (5 mg/kg). No changes in anti-immobility action of desipramine (20 mg/kg) in combination with sildenafil (5, 10 and 20 mg/kg) were observed. Sildenafil did not affect amitriptyline level in both brain and serum. In conclusion, the present study suggests that sildenafil may enhance the activity of antidepressant drugs which exhibit cholinolytic activity
BRS 361: nova cultivar de soja convencional.
Trabalho publicado também nos Resumos do CONGRESSO BRASILEIRO DE SOJA, 6., 2012, Cuiabá
- …