10,530 research outputs found

    Repeated exercise stress impairs volitional but not magnetically evoked electromechanical delay of the knee flexors

    Get PDF
    The effects of serial episodes of fatigue and recovery on volitional and magnetically evoked neuromuscular performance of the knee flexors were assessed in twenty female soccer players during: (i) an intervention comprising 4x35s maximal static exercise; (ii) a control condition. Volitional peak force (PFV) was impaired progressively (-16 % vs. baseline: 235.3±54.7 to 198.1±38.5 N) by the fatiguing exercise and recovered to within -97 % of baseline values following six-minutes of rest. Evoked peak twitch force (PTFE) was diminished subsequent to the fourth episode of exercise (23.3 %: 21.4±13.8 vs. 16.4±14.6 N) and remained impaired at this level throughout the recovery. Impairment of volitional electromechanical delay performance (EMDV) following the first episode of exercise (25.5 % :55.3±11.9 vs. 69.5±24.5 ms) contrasted with concurrent improvement (10.0 %: 24.5±4.7 vs. 22.1±5.0 ms) in evoked electromechanical delay (EMDE) (p <0.05) and this increased disparity between EMDE and EMDV remained during subsequent periods of intervention and recovery. The fatiguing exercise provoked substantial impairments to volitional strength and EMDV that showed differential patterns of recovery. However, improved EMDE performance might identify a dormant capability for optimal muscle responses during acute stressful exercise and an improved capacity to maintain dynamic joint stabilty during critical episodes of loading

    Hydrous Manganese Oxide Doped Gel Probe Sampler for Measuring In Situ Reductive Dissolution Rates. 2. Field Deployment

    Get PDF
    In situ rates of reductive dissolution in submerged shoreline sediments at Lake Tegel (Berlin, Germany) were measured with a novel hydrous manganese (Mn) oxide-doped gel probe sampler in concert with equilibrium gel probe and sequential extraction measurements. Rates were low in the top 8 cm, then showed a peak from 8 to 14 cm, with a maximum at 12 cm depth. This rate corresponded with a peak in dissolved porewater iron (Fe) at 11 cm depth. Below 14 cm, the reductive dissolution rate reached an intermediate steady value. Lower rates at depth corresponded with increases in operationally defined fractions of carbonate-bound and organic- and sulfide-bound Mn and Fe as detected by sequential extraction. Observed rates of reductive dissolution, which reflect a capacity for Mn reduction rather than actual rates under ambient conditions, appear to correlate with porewater chemistry and sequential extraction fractions as expected in early sediment diagenesis, and are consistent with previous measurements of in situ reductive dissolution rates. Significant downward advection in this bank filtration setting depletes the Mn and Fe oxides in the sediments and enhances the transport of dissolved Fe and Mn into the infiltrating water

    Infanticide in Chimpanzees: Taphonomic Case Studies from Gombe

    Get PDF
    Objectives We present a study of skeletal damage to four chimpanzee (Pan troglodytes) infanticide victims from Gombe National Park, Tanzania. Skeletal analysis may provide insight into the adaptive significance of infanticide by examining whether nutritional benefits sufficiently explain infanticidal behavior. The nutritional hypothesis would be supported if bone survivorship rates and skeletal damage patterns are comparable to those of monkey prey. If not, other explanations, such as the resource competition hypothesis, should be considered. Methods Taphonomic assessment of two chimpanzee infants included description of breakage and surface modification, data on MNE, %MNE, and bone survivorship. Two additional infants were assessed qualitatively. The data were compared to published information on monkey prey. We also undertook a review of published infanticide cases. Results The cases were intercommunity infanticides (one male and three female infants) committed by males. Attackers partially consumed two of the victims. Damage to all four infants included puncture marks and compression fractures to the cranium, crenulated breaks to long bones, and incipient fractures on ribs. Compared to monkey prey, the chimpanzee infants had an abundance of vertebrae and hand/foot bones. Conclusions The cases described here suggest that chimpanzees may not always completely consume infanticide victims, while reports on chimpanzee predation indicated that complete consumption of monkey prey usually occurred. Infanticidal chimpanzees undoubtedly gain nutritional benefits when they consume dead infants, but this benefit may not sufficiently explain infanticide in this species. Continued study of infanticidal and hunting behavior, including skeletal analysis, is likely to be of interest

    On the multiplicity of the hyperelliptic integrals

    Full text link
    Let I(t)=∮δ(t)ωI(t)= \oint_{\delta(t)} \omega be an Abelian integral, where H=y2−xn+1+P(x)H=y^2-x^{n+1}+P(x) is a hyperelliptic polynomial of Morse type, δ(t)\delta(t) a horizontal family of cycles in the curves {H=t}\{H=t\}, and ω\omega a polynomial 1-form in the variables xx and yy. We provide an upper bound on the multiplicity of I(t)I(t), away from the critical values of HH. Namely: $ord\ I(t) \leq n-1+\frac{n(n-1)}{2}if if \deg \omega <\deg H=n+1.Thereasoninggoesasfollows:weconsidertheanalyticcurveparameterizedbytheintegralsalong. The reasoning goes as follows: we consider the analytic curve parameterized by the integrals along \delta(t)ofthe of the n‘‘Petrov′′formsof ``Petrov'' forms of H(polynomial1−formsthatfreelygeneratethemoduleofrelativecohomologyof (polynomial 1-forms that freely generate the module of relative cohomology of H),andinterpretthemultiplicityof), and interpret the multiplicity of I(t)astheorderofcontactof as the order of contact of \gamma(t)andalinearhyperplaneof and a linear hyperplane of \textbf C^ n.UsingthePicard−Fuchssystemsatisfiedby. Using the Picard-Fuchs system satisfied by \gamma(t),weestablishanalgebraicidentityinvolvingthewronskiandeterminantoftheintegralsoftheoriginalform, we establish an algebraic identity involving the wronskian determinant of the integrals of the original form \omegaalongabasisofthehomologyofthegenericfiberof along a basis of the homology of the generic fiber of H.Thelatterwronskianisanalyzedthroughthisidentity,whichyieldstheestimateonthemultiplicityof. The latter wronskian is analyzed through this identity, which yields the estimate on the multiplicity of I(t).Still,insomecases,relatedtothegeometryatinfinityofthecurves. Still, in some cases, related to the geometry at infinity of the curves \{H=t\} \subseteq \textbf C^2,thewronskianoccurstobezeroidentically.Inthisalternativeweshowhowtoadapttheargumenttoasystemofsmallerrank,andgetanontrivialwronskian.Foraform, the wronskian occurs to be zero identically. In this alternative we show how to adapt the argument to a system of smaller rank, and get a nontrivial wronskian. For a form \omegaofarbitrarydegree,weareledtoestimatingtheorderofcontactbetween of arbitrary degree, we are led to estimating the order of contact between \gamma(t)andasuitablealgebraichypersurfacein and a suitable algebraic hypersurface in \textbf C^{n+1}.Weobservethat. We observe that ord I(t)growslikeanaffinefunctionwithrespectto grows like an affine function with respect to \deg \omega$.Comment: 18 page

    Identifying "communities" within energy landscapes

    Full text link
    Potential energy landscapes can be represented as a network of minima linked by transition states. The community structure of such networks has been obtained for a series of small Lennard-Jones clusters. This community structure is compared to the concept of funnels in the potential energy landscape. Two existing algorithms have been used to find community structure, one involving removing edges with high betweenness, the other involving optimization of the modularity. The definition of the modularity has been refined, making it more appropriate for networks such as these where multiple edges and self-connections are not included. The optimization algorithm has also been improved, using Monte Carlo methods with simulated annealing and basin hopping, both often used successfully in other optimization problems. In addition to the small clusters, two examples with known heterogeneous landscapes, LJ_13 with one labelled atom and LJ_38, were studied with this approach. The network methods found communities that are comparable to those expected from landscape analyses. This is particularly interesting since the network model does not take any barrier heights or energies of minima into account. For comparison, the network associated with a two-dimensional hexagonal lattice is also studied and is found to have high modularity, thus raising some questions about the interpretation of the community structure associated with such partitions.Comment: 13 pages, 11 figure

    Measuring rainfall from above and below the sea surface

    No full text
    Satellites play a major role in the determination of the rainfall at sea. Researchers at Southampton Oceanography Centre (SOC) have been involved in two projects addressing this task. First they have been instrumental in developing techniques to retrieve rain rate information from the 10+ years of dual-frequency altimeter data. The TOPEX radar measures rainfall via the attenuation it causes, producing a climatology that is independent of those derived from passive microwave (PM) and infrared (IR) sensors. Because TOPEX is an active microwave sensor, it can have a much smaller footprint than PM sensors. Therefore it can be used to estimate the size of rain cells, showing that the ITCZ and mid-latitude storm tracks are characterized by larger rain systems than elsewhere. TOPEX’s simultaneous recording of wind and wave data reveal that, for mid-latitude systems, rain is most likely in association with developing seas.All satellite-based datasets require validation, and SOC's work on the development and testing of acoustic rain gauges is the second aspect of this paper. By listening at a range of frequencies, an underwater hydrophone may distinguish the spectra of wind, rain, shipping etc., and estimate the wind speed or rain rate according to the magnitude of the signals. All our campaigns have shown a good acoustic response to changes in wind speed. However the quantitative inversion for recent trials has given values that are too high, possibly because of significant acoustic reflection from the sea bottom. The changes in spectral slope often agree with other observations of rain, although validation experiments in coastal regions are hampered by the extraneous sources present. Acoustic rain gauges would eventually see service not only for routine satellite validation, but also for real-time monitoring of locations of interest

    Sub-20 nm Core-Shell-Shell Nanoparticles for Bright Upconversion and Enhanced Förster Resonant Energy Transfer.

    Get PDF
    Upconverting nanoparticles provide valuable benefits as optical probes for bioimaging and Förster resonant energy transfer (FRET) due to their high signal-to-noise ratio, photostability, and biocompatibility; yet, making nanoparticles small yields a significant decay in brightness due to increased surface quenching. Approaches to improve the brightness of UCNPs exist but often require increased nanoparticle size. Here we present a unique core-shell-shell nanoparticle architecture for small (sub-20 nm), bright upconversion with several key features: (1) maximal sensitizer concentration in the core for high near-infrared absorption, (2) efficient energy transfer between core and interior shell for strong emission, and (3) emitter localization near the nanoparticle surface for efficient FRET. This architecture consists of β-NaYbF4 (core) @NaY0.8-xErxGd0.2F4 (interior shell) @NaY0.8Gd0.2F4 (exterior shell), where sensitizer and emitter ions are partitioned into core and interior shell, respectively. Emitter concentration is varied (x = 1, 2, 5, 10, 20, 50, and 80%) to investigate influence on single particle brightness, upconversion quantum yield, decay lifetimes, and FRET coupling. We compare these seven samples with the field-standard core-shell architecture of β-NaY0.58Gd0.2Yb0.2Er0.02F4 (core) @NaY0.8Gd0.2F4 (shell), with sensitizer and emitter ions codoped in the core. At a single particle level, the core-shell-shell design was up to 2-fold brighter than the standard core-shell design. Further, by coupling a fluorescent dye to the surface of the two different architectures, we demonstrated up to 8-fold improved emission enhancement with the core-shell-shell compared to the core-shell design. We show how, given proper consideration for emitter concentration, we can design a unique nanoparticle architecture to yield comparable or improved brightness and FRET coupling within a small volume

    Selective amplification of scars in a chaotic optical fiber

    Get PDF
    In this letter we propose an original mechanism to select scar modes through coherent gain amplification in a multimode D-shaped fiber. More precisely, we numerically demonstrate how scar modes can be amplified by positioning a gain region in the vicinity of specific points of a short periodic orbit known to give rise to scar modes
    • …
    corecore