1,542 research outputs found

    Submicrosecond comparisons of time standards via the Navigation Technology Satellites (NTS)

    Get PDF
    An interim demonstration was performed of the time transfer capability of the NAVSTAR GPS system using a single NTS satellite. Measurements of time difference (pseudo-range) are made from the NTS tracking network and at the participating observatories. The NTS network measurements are used to compute the NTS orbit trajectory. The central NTS tracking station has a time link to the Naval Observatory UTC (USNO,MC1) master clock. Measurements are used with the NTS receiver at the remote observatory, the time transfer value UTC (USNO,MC1)-UTC (REMOTE, VIA NTS) is calculated. Intercomparisons were computed using predicted values of satellite clock offset and ephemeus

    Relativistic spectroscopy of the extreme NLS1 IRAS13224-3809

    Get PDF
    The narrow line Seyfert 1 (NLS1) IRAS 13224-3809 is the most X-ray variable active galactic nucleus (AGN), exhibiting 0.3-10 keV flux changes of over an order of magnitude within an hour. We report on the results of the 1.5 Ms 2016 XMM-Newton/NuSTAR observing campaign, which revealed the presence of a 0.24c ultra-fast outflow in addition to the well-known strong relativistic reflection. We also summarise other key results of the campaign, such as the first detection of a non-linear RMS-flux relation in an accreting source, correlations between outflow absorption strength/velocity and source flux, and a disconnect between the X-ray and UV emission. Our results are consistent with a scenario where a disk wind is launched close to the black hole, imprinting absorption features into the spectrum and variability.Comment: 6 pages, 7 figures, contributed talk at "Revisiting narrow-line Seyfert 1 galaxies and their place in the Universe" (Padova, April 2018). Accepted for publication in Proceedings of Science, PoS(NLS1-2018)03

    Intermittent origin of the large violations of the fluctuation dissipation relations in an aging polymer glass

    Get PDF
    The fluctuation-dissipation relation (FDR) is measured on the dielectric properties of a polymer glass (polycarbonate)in the range 20mHz−100Hz20mHz - 100Hz. It is found that after a quench below the glass transition temperature the fluctuation dissipation theorem is strongly violated. The amplitude and the persistence time of this violation are decreasing functions of frequency. At frequencies larger than 1Hz it persists for about 3h3h. The origin of this violation is a highly intermittent dynamics characterized by large fluctuations. The relevance of these results for recent models of aging dynamics are discussed.Comment: to be published in Europhysics Letter

    In-situ measurement of the permittivity of helium using microwave NbN resonators

    Full text link
    By measuring the electrical transport properties of superconducting NbN quarter-wave resonators in direct contact with a helium bath, we have demonstrated a high-speed and spatially sensitive sensor for the permittivity of helium. In our implementation a ∼10−3\sim10^{-3} mm3^3 sensing volume is measured with a bandwidth of 300 kHz in the temperature range 1.8 to 8.8 K. The minimum detectable change of the permittivity of helium is calculated to be ∼6×\sim6\times10−1110^{-11} ϵ0\epsilon_0/Hz1/2^{1/2} with a sensitivity of order 10−1310^{-13} ϵ0\epsilon_0/Hz1/2^{1/2} easily achievable. Potential applications include operation as a fast, localized helium thermometer and as a transducer in superfluid hydrodynamic experiments.Comment: 4 pages, 3 figure

    Study of Space Station propulsion system resupply and repair Final report

    Get PDF
    Resupply and repair capabilities for orbital space station bipropellant propulsion syste

    A V-shape superconducting artificial atom based on two inductively coupled transmons

    Full text link
    Circuit quantum electrodynamics systems are typically built from resonators and two-level artificial atoms, but the use of multi-level artificial atoms instead can enable promising applications in quantum technology. Here we present an implementation of a Josephson junction circuit dedicated to operate as a V-shape artificial atom. Based on a concept of two internal degrees of freedom, the device consists of two transmon qubits coupled by an inductance. The Josephson nonlinearity introduces a strong diagonal coupling between the two degrees of freedom that finds applications in quantum non-demolition readout schemes, and in the realization of microwave cross-Kerr media based on superconducting circuits.Comment: 5 pages, 3 figure
    • …
    corecore