429 research outputs found
Unzipping Dynamics of Long DNAs
The two strands of the DNA double helix can be `unzipped' by application of
15 pN force. We analyze the dynamics of unzipping and rezipping, for the case
where the molecule ends are separated and re-approached at constant velocity.
For unzipping of 50 kilobase DNAs at less than about 1000 bases per second,
thermal equilibrium-based theory applies. However, for higher unzipping
velocities, rotational viscous drag creates a buildup of elastic torque to
levels above kBT in the dsDNA region, causing the unzipping force to be well
above or well below the equilibrium unzipping force during respectively
unzipping and rezipping, in accord with recent experimental results of Thomen
et al. [Phys. Rev. Lett. 88, 248102 (2002)]. Our analysis includes the effect
of sequence on unzipping and rezipping, and the transient delay in buildup of
the unzipping force due to the approach to the steady state.Comment: 15 pages Revtex file including 9 figure
Carrier relaxation in GaAs v-groove quantum wires and the effects of localization
Carrier relaxation processes have been investigated in GaAs/AlGaAs v-groove
quantum wires (QWRs) with a large subband separation (46 meV). Signatures of
inhibited carrier relaxation mechanisms are seen in temperature-dependent
photoluminescence (PL) and photoluminescence-excitation (PLE) measurements; we
observe strong emission from the first excited state of the QWR below ~50 K.
This is attributed to reduced inter-subband relaxation via phonon scattering
between localized states. Theoretical calculations and experimental results
indicate that the pinch-off regions, which provide additional two-dimensional
confinement for the QWR structure, have a blocking effect on relaxation
mechanisms for certain structures within the v-groove. Time-resolved PL
measurements show that efficient carrier relaxation from excited QWR states
into the ground state, occurs only at temperatures > 30 K. Values for the low
temperature radiative lifetimes of the ground- and first excited-state excitons
have been obtained (340 ps and 160 ps respectively), and their corresponding
localization lengths along the wire estimated.Comment: 9 pages, 8 figures, submitted to Phys. Rev. B Attempted to correct
corrupt figure
Multiband theory of multi-exciton complexes in self-assembled quantum dots
We report on a multiband microscopic theory of many-exciton complexes in
self-assembled quantum dots. The single particle states are obtained by three
methods: single-band effective-mass approximation, the multiband
method, and the tight-binding method. The electronic structure calculations are
coupled with strain calculations via Bir-Pikus Hamiltonian. The many-body wave
functions of electrons and valence holes are expanded in the basis of
Slater determinants. The Coulomb matrix elements are evaluated using statically
screened interaction for the three different sets of single particle states and
the correlated -exciton states are obtained by the configuration interaction
method. The theory is applied to the excitonic recombination spectrum in
InAs/GaAs self-assembled quantum dots. The results of the single-band
effective-mass approximation are successfully compared with those obtained by
using the of and tight-binding methods.Comment: 10 pages, 8 figure
Why do semi-analytic models predict higher scatter in the stellar mass-halo mass relation than cosmological hydrodynamic simulations?
Semi-analytic models (SAMs) systematically predict higher stellar-mass
scatter at a given halo mass than hydrodynamical simulations and most empirical
models. Our goal is to investigate the physical origin of this scatter by
exploring modifications to the physics in the SAM Dark Sage. We design two
black hole formation models that approximate results from the IllustrisTNG
300-1 hydrodynamical simulation. In the first model, we assign a fixed black
hole mass of to every halo that reaches
. In the second model, we disregard any black
hole growth as implemented in the standard Dark Sage model. Instead, we force
all black hole masses to follow the median black hole mass-halo mass relation
in IllustrisTNG 300-1 with a fixed scatter. We find that each model on its own
does not significantly reduce the scatter in stellar mass. To do this, we
replace the native Dark Sage AGN feedback model with a simple model where we
turn off cooling for galaxies with black hole masses above . With this additional modification, the SMBH seeding and
fixed conditional distribution models find a significant reduction in the
scatter in stellar mass at halo masses between . These results suggest that AGN feedback in SAMs acts in a
qualitatively different way than feedback implemented in cosmological
simulations. Either or both may require substantial modification to match the
empirically inferred scatter in the Stellar Mass Halo Mass Relation (SMHMR).Comment: 21 pages, 16 figure
Current Switch by Coherent Trapping of Electrons in Quantum Dots
We propose a new transport mechanism through tunnel-coupled quantum dots
based on the coherent population trapping effect. Coupling to an excited level
by the coherent radiation of two microwaves can lead to an extremely narrow
current antiresonance. The effect can be used to determine interdot dephasing
rates and is a mechanism for a very sensitive, optically controlled current
switch.Comment: to appear in Phys. Rev. Let
Transient current spectroscopy of a quantum dot in the Coulomb blockade regime
Transient current spectroscopy is proposed and demonstrated in order to
investigate the energy relaxation inside a quantum dot in the Coulomb blockade
regime. We employ a fast pulse signal to excite an AlGaAs/GaAs quantum dot to
an excited state, and analyze the non-equilibrium transient current as a
function of the pulse length. The amplitude and time-constant of the transient
current are sensitive to the ground and excited spin states. We find that the
spin relaxation time is longer than, at least, a few microsecond.Comment: 5 pages, 3 figure
Multi-Exciton Spectroscopy of a Single Self Assembled Quantum Dot
We apply low temperature confocal optical microscopy to spatially resolve,
and spectroscopically study a single self assembled quantum dot. By comparing
the emission spectra obtained at various excitation levels to a theoretical
many body model, we show that: Single exciton radiative recombination is very
weak. Sharp spectral lines are due to optical transitions between confined
multiexcitonic states among which excitons thermalize within their lifetime.
Once these few states are fully occupied, broad bands appear due to transitions
between states which contain continuum electrons.Comment: 12 pages, 4 figures, submitted for publication on Jan,28 199
Auxiliary-level-assisted operations with charge qubits in semiconductors
We present a new scheme for rotations of a charge qubit associated with a
singly ionized pair of donor atoms in a semiconductor host. The logical states
of such a qubit proposed recently by Hollenberg et al. are defined by the
lowest two energy states of the remaining valence electron localized around one
or another donor. We show that an electron located initially at one donor site
can be transferred to another donor site via an auxiliary molecular level
formed upon the hybridization of the excited states of two donors. The electron
transfer is driven by a single resonant microwave pulse in the case that the
energies of the lowest donor states coincide or two resonant pulses in the case
that they differ from each other. Depending on the pulse parameters, various
one-qubit operations, including the phase gate, the NOT gate, and the Hadamard
gate, can be realized in short times. Decoherence of an electron due to the
interaction with acoustic phonons is analyzed and shown to be weak enough for
coherent qubit manipulation being possible, at least in the proof-of-principle
experiments on one-qubit devices.Comment: Extended version of cond-mat/0411605 with detailed discussion of
phonon-induced decoherence including dephasing and relaxation; to be
published in JET
- …