270 research outputs found
Electrostatics of Vortices in Type II Superconductors
In a type II superconductor the gap variation in the core of a vortex line
induces a local charge modulation. Accounting for metallic screening, we
determine the line charge of individual vortices and calculate the electric
field distribution in the half space above a field penetrated superconductor.
The resulting field is that of an atomic size dipole , is the Bohr radius, acting
on a force microscope in the pico to femto Newton range.Comment: 9 pages, late
On the Coexistence of Diagonal and off-Diagonal Long-Range Order, a Monte Carlo Study
The zero temperature properties of interacting 2 dimensional lattice bosons
are investigated. We present Monte Carlo data for soft-core bosons that
demonstrate the existence of a phase in which crystalline long-range order and
off-diagonal long-range order (superfluidity) coexist. We comment on the
difference between hard and soft-core bosons and compare our data to mean-field
results that predict a larger coexistence region. Furthermore, we determine the
critical exponents for the various phase transitions.Comment: 7 pages and 8 figures appended in postscript, KA-TFP-93-0
Organic chemistry in South Africa
CITATION: Van Otterlo, W. A. L. 2020. Organic chemistry in South Africa. Arkivoc, iii:1-3, doi:10.24820/ark.5550190.p001.480.The original publication is available at https://www.arkat-usa.orgENGLISH ABSTRACT: No abstract available.Publisher's versio
Magnetization process of the spin-1/2 XXZ models on square and cubic lattices
The magnetization process of the spin-1/2 antiferromagnetic XXZ model with
Ising-like anisotropy in the ground state is investigated. We show numerically
that the Ising-like XXZ models on square and cubic lattices show a first-order
phase transition at some critical magnetic field. We estimate the value of the
critical field and the magnetization jump on the basis of the Maxwell
construction. The magnetization jump in the Ising-limit is investigated by
means of perturbation theory. Based on our numerical results, we briefly
discuss the phase diagram of the extended Bose-Hubbard model in the hard-core
limit.Comment: 13 pages, RevTex, 7 PostScript figures, to appear in Phys.Rev.
first isolation of acetovanillone and piceol from crinum buphanoides and crinum graminicola i verd amaryllidaceae
Screening of three native South African Amaryllidaceae bulbs, aimed at finding new metabolites for their promising biological activities, lead to the initial discovery of two interesting non-alkaloid compounds viz., acetovanillone 1 (also known as apocynin) and 4-hydroxyacetophenone 2 (also named piceol) isolated from Crinum buphonoides, while only the former was isolated from Crinum graminicola. This is the first time that acetovanillone 1 and piceol 2 were isolated from C. graminicola and C. buphanoides, respectively. Acetovanillone 1 was recently reported as a metabolite of Boophane disticha (L.f.), another South Africa Amaryllidacea species
Atroposelective NiII‐Catalyzed Cross‐Coupling Reactions Enable a Deeper Understanding of Negishi Couplings: Isolation and Application of Solid Aryl Higher‐Order Zincates
The Negishi cross-coupling reactions involves the application of organozinc reagents and is a highly versatile reaction in synthetic organic chemistry. The transmetallation step plays a pivotal role in the mechanism of these types of cross-coupling reactions. In this study, mechanistic investigations are presented indicating that higher-order zincates are the transmetallating active species in Pd- and Ni-catalyzed Negishi cross-coupling reactions. These findings are supported by halide salt addition experiments and by obtaining a single X-ray crystal structure of the solid monoaryl higher-order zincate [1-NaphthylZnX3]2−Mg(THF)22+. The procedure developed in this work was further applied to the synthesis of various monoaryl higher-order zincates, after which their synthetic usefulness in terms of high reactivity towards transmetallation in Negishi cross-couplings, as well as stability, was exemplified in several reactions
Phase diagrams, critical and multicritical behavior of hard-core Bose-Hubbard models
We determine the zero-temperature phase diagram of the hard-core Bose-Hubbard
model on a square lattice by mean-field theory supplemented by a linear
spin-wave analysis. Due to the interplay between nearest and next-nearest
neighbor interaction and cubic anisotropy several supersolid phases with
checkerboard, stripe domain or intermediate symmetry are stabilized. The phase
diagrams show three different topologies depending on the relative strength of
nearest and next-nearest neighbor interaction. We also find a rich variety of
new quantum critical behavior and multicritical points and discuss the
corresponding effective actions and universality classes.Comment: 19 pages, ReVTeX, 18 figures included, submitted to PR
The Superconductor-Insulator Transition in a Tunable Dissipative Environment
We study the influence of a tunable dissipative environment on the dynamics
of Josephson junction arrays near the superconductor-insulator transition. The
experimental realization of the environment is a two dimensional electron gas
coupled capacitively to the array. This setup allows for the well-controlled
tuning of the dissipation by changing the resistance of the two dimensional
electron gas. The capacitive coupling cuts off the dissipation at low
frequencies. We determine the phase diagram and calculate the temperature and
dissipation dependence of the array conductivity. We find good agreement with
recent experimental results.Comment: 4 pages, 4 .eps figures, revte
Tunnel junctions of unconventional superconductors
The phenomenology of Josephson tunnel junctions between unconventional
superconductors is developed further. In contrast to s-wave superconductors,
for d-wave superconductors the direction dependence of the tunnel matrix
elements that describe the barrier is relevant. We find the full I-V
characteristics and comment on the thermodynamical properties of these
junctions. They depend sensitively on the relative orientation of the
superconductors. The I-V characteristics differ from the normal s-wave RSJ-like
behavior.Comment: 4 pages, revtex, 4 (encapsulated postscript) figures (figures
replaced
Charge Frustration Effects in Capacitively Coupled Two-Dimensional Josephson-Junction Arrays
We investigate the quantum phase transitions in two capacitively coupled
two-dimensional Josephson-junction arrays with charge frustration. The system
is mapped onto the S=1 and anisotropic Heisenberg antiferromagnets near
the particle-hole symmetry line and near the maximal-frustration line,
respectively, which are in turn argued to be effectively described by a single
quantum phase model. Based on the resulting model, it is suggested that near
the maximal frustration line the system may undergo a quantum phase transition
from the charge-density wave to the super-solid phase, which displays both
diagonal and off- diagonal long-range order.Comment: 6 pages, 6 figures, to appear in Phys. Rev.
- …