620 research outputs found
Constraints on ship NOx emissions in Europe using GEOS-Chem and OMI satellite NO2 observations
We present a top-down ship NOx emission inventory for the Baltic Sea, the North Sea, the Bay of Biscay and the Mediterranean Sea based on satellite-observed tropospheric NO2 columns of the Ozone Monitoring Instrument (OMI) for 2005–2006. We improved the representation of ship emissions in the GEOS-Chem chemistry transport model, and compared simulated NO2 columns to consistent satellite observations. Relative differences between simulated and observed NO2 columns have been used to constrain ship emissions in four European seas (the Baltic Sea, the North Sea, the Bay of Biscay and the Mediterranean Sea) using a mass-balance approach, and accounting for non-linear sensitivities to changing emissions in both model and satellite retrieval. These constraints are applied to 39 % of total top-down European ship NOx emissions, which amount to 0.96 Tg N for 2005, and 1.0 Tg N for 2006 (11–15% lower than the bottom-up EMEP ship emission inventory). Our results indicate that EMEP emissions in the Mediterranean Sea are too high (by 60%) and misplaced by up to 150 km, which can have important consequences for local air quality simulations. In the North Sea ship track, our top-down emissions amount to 0.05 Tg N for 2005 (35% lower than EMEP). Increased top-down emissions were found for the Baltic Sea and the Bay of Biscay ship tracks, with totals in these tracks of 0.05 Tg N (131% higher than EMEP) and 0.08 Tg N for 2005 (128% higher than EMEP), respectively. Our study explicitly accounts for the (non-linear) sensitivity of satellite retrievals to changes in the a priori NO2 profiles, as satellite observations are never fully independent of model information (i.e. assumptions on vertical NO2 profiles). Our study provides for the first time a space-based, top-down ship NOx emission inventory, and can serve as a framework for future studies to constrain ship emissions using satellite NO2 observations in other seas
Global Aerosol Health Impacts: Quantifying Uncertainties
Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/).Atmospheric fine particulate matter <2.5 μm (PM2.5) can cause cardiovasculatory and respiratory damages and mortalities. Assessing population exposure to and damages from PM2.5 is important for policy, but measurement networks are only available in a few regions. We assess variation resulting from using different sources of concentration information to constrain PM2.5 exposure worldwide, and compare the magnitude of this variation to uncertainties in epidemiological exposure-response functions and economic valuation of health impacts. We find that only 10% of global population is in areas constrained by ground-based data. We calculate and compare regionally-averaged population-weighted concentrations using two atmospheric models: the MIT/NCAR CAM3 aerosol-climate model, and the GEOS-Chem atmospheric chemistry model; and a satellite-derived PM2.5 product. We examine the contributions of different aerosol components to population-weighted PM2.5, and find large differences in exposure between U.S. and global populations. We use the MIT Emissions Prediction and Policy Analysis Health Effects model (EPPA-HE) to assess global health impacts and related economic costs, and conduct probabilistic uncertainty analysis of concentration-response functions. We use these combined approaches to project uncertainty ranges for health impacts and related economic costs from present-day PM2.5. We find large uncertainties in simulated PM2.5, especially globally; the magnitude of concentration variation among estimation methods is comparable to uncertainties in epidemiological functions and economic valuations. We identify major contributors to concentration variation, notably the parameterization of atmospheric dust. We estimate an annual global welfare cost of present-day (2000-2005) PM2.5 of 120 – 510 billion), and related annual mortalities at 1.3 million per year (630,000 – 2.1 million).United States Environmental Protection Agency’s
Science to Achieve Results (STAR) program (RD-83427901-0) and the MIT Joint Program on the Science and Policy of Global Change, which is funded by a consortium of government, industry and foundation sponsor
No one knows which city has the highest concentration of fine particulate matter
This is the final version. Available from the publisher via the DOI in this record.Exposure to ambient fine particulate matter (PM2.5) is the leading global environmental risk factor for mortality and disease burden, with associated annual global welfare costs of trillions of dollars. Examined within is the ability of current data to answer a basic question about PM2.5, namely the location of the city with the highest PM2.5 concentration. The ability to answer this basic question serves as an indicator of scientific progress to assess global human exposure to air pollution and as an important component of efforts to reduce its impacts. Despite the importance of PM2.5, we find that insufficient monitoring data exist to answer this basic question about the spatial pattern of PM2.5 at the global scale. Only 24 of 234 countries have more than 3 monitors per million inhabitants, while density is an order of magnitude lower in the vast majority of the world's countries, with 141 having no regular PM2.5 monitoring at all. The global mean population distance to nearest PM2.5 monitor is 220 km, too large for exposure assessment. Efforts to fill in monitoring gaps with estimates from satellite remote sensing, chemical transport modeling, and statistical models have biases at individual monitor locations that can exceed 50 μg m−3. Progress in advancing knowledge about the global distribution of PM2.5 will require a harmonized network that integrates different types of monitoring equipment (regulatory networks, low-cost monitors, satellite remote sensing, and research-grade instrumentation) with atmospheric and statistical models. Realization of such an integrated framework will facilitate accurate identification of the location of the city with the highest PM2.5 concentration and play a key role in tracking the progress of efforts to reduce the global impacts of air pollution.Natural Sciences and Engineering Research Council of CanadaDepartment of Biotechnology on ‘Air Pollution and Human Health
Trans-Pacific dust events observed at Whistler, British Columbia during INTEX-B
International audienceThe meteorology and physico-chemical characteristics of aerosol associated with two new cases of long range dust transport affecting western Canada during spring 2006 are described. Each event showed enhancements of both sulfate aerosol and crustal material of Asian origin. However, the events were of quite different character and demonstrate the highly variable nature of such events. The April event was a significant dust event with moderate sulfate enhancement while the May event was a weak dust event with very significant sulfate enhancement. The latter event was interesting in the sense that it was of short duration and was quickly followed by significant enhancement of organic material likely of regional origin. Comparison of these two events with other documented cases extending back to 1993, suggests that all dust events show coincident enhancements of sulfate and crustal aerosol. However, events vary across a wide continuum based on the magnitude of aerosol enhancements and their sulfate to calcium ratios. At one extreme, events are dominated by highly significant crustal enhancements (e.g. the well-documented 1998 and 2001 "dust" events) while at the other are events with some dust transport, but where sulfate enhancements are of very high magnitude (e.g. the 1993 event at Crater Lake and the 15 May 2006 event at Whistler). Other events represent a "mix". It is likely that this variability is a function of the comparative strengths of the dust and anthropogenic SO2 sources, the transport pathway and in particular the extent to which dust is transported across industrial SO2 sources, and finally, meteorological and chemical processes
Recommended from our members
Impact of Mineral Dust on Nitrate, Sulfate, and Ozone in Transpacific Asian Pollution Plumes
We use a 3-D global chemical transport model (GEOS-Chem) to interpret aircraft observations of nitrate and sulfate partitioning in transpacific dust plumes during the INTEX-B campaign of April–May 2006. The model includes explicit transport of size-resolved mineral dust and its alkalinity, nitrate, and sulfate content. The observations show that particulate nitrate is primarily associated with dust, sulfate is primarily associated with ammonium, and Asian dust remains alkaline across the Pacific. This can be reproduced in the model by using a reactive uptake coefficient for on dust much lower than commonly assumed in models and possibly reflecting limitation of uptake by dust dissolution. The model overestimates gas-phase by a factor of 2–3, typical of previous model studies; we show that this cannot be corrected by uptake on dust. We find that the fraction of aerosol nitrate on dust in the model increases from ~30% in fresh Asian outflow to 80–90% over the Northeast Pacific, reflecting in part the volatilization of ammonium nitrate and the resulting transfer of nitrate to the dust. Consumption of dust alkalinity by uptake of acid gases in the model is slow relative to the lifetime of dust against deposition, so that dust does not acidify (at least not in the bulk). This limits the potential for dust iron released by acidification to become bio-available upon dust deposition. Observations in INTEX-B show no detectable ozone depletion in Asian dust plumes, consistent with the model. Uptake of by dust, suppressing its recycling to , reduces Asian pollution influence on US surface ozone in the model by 10–15% or up to 1 ppb.Engineering and Applied Science
Long-term trends worldwide in ambient NO2 concentrations inferred from satellite observations
BACKGROUND: Air pollution is associated with morbidity and premature mortality. Satellite
remote sensing provides globally consistent decadal-scale observations of ambient nitrogen dioxide
(NO2) pollution.
OBJECTIVE: We determined global population-weighted annual mean NO2 concentrations from
1996 through 2012.
METHODS: We used observations of NO2 tropospheric column densities from three satellite instruments
in combination with chemical transport modeling to produce a global 17-year record of
ground-level NO2 at 0.1° × 0.1° resolution. We calculated linear trends in population-weighted
annual mean NO2 (PWMNO2) concentrations in different regions around the world.
RESULTS: We found that PWMNO2 in high-income North America (Canada and the United States)
decreased more steeply than in any other region, having declined at a rate of –4.7%/year [95%
confidence interval (CI): –5.3, –4.1]. PWMNO2 decreased in western Europe at a rate of –2.5%/year
(95% CI: –3.0, –2.1). The highest PWMNO2 occurred in high-income Asia Pacific (predominantly
Japan and South Korea) in 1996, with a subsequent decrease of –2.1%/year (95% CI: –2.7, –1.5).
In contrast, PWMNO2 almost tripled in East Asia (China, North Korea, and Taiwan) at a rate
of 6.7%/year (95% CI: 6.0, 7.3). The satellite-derived estimates of trends in ground-level NO2
were consistent with regional trends inferred from data obtained from ground-station monitoring
networks in North America (within 0.7%/year) and Europe (within 0.3%/year). Our rankings of
regional average NO2 and long-term trends differed from the satellite-derived estimates of fine
particulate matter reported elsewhere, demonstrating the utility of both indicators to describe
changing pollutant mixtures.
CONCLUSIONS: Long-term trends in satellite-derived ambient NO2 provide new information
about changing global exposure to ambient air pollution. Our estimates are publicly available at
http://fizz.phys.dal.ca/~atmos/martin/?page_id=232.Published versio
Friction reducing ability of a poly-l-lysine and dopamine modified hyaluronan coating for polycaprolactone cartilage resurfacing implants
Frictional properties of cartilage resurfacing implants should be sufficiently low to limit damaging of the opposing cartilage during articulation. The present study determines if native lubricious molecule proteoglycan 4 (PRG4) can adsorb onto a layer-by-layer bioinspired coating composed of poly-l-lysine (PLL) and dopamine modified hyaluronic acid (HADN) and thereby can reduce the friction between implant and articular cartilage. An ELISA was developed to quantify the amount of immobilized human recombinant (rh)PRG4 after exposure to the PLL-HADN coating. The effect on lubrication was evaluated by comparing the coefficient of friction (CoF) of bare polycaprolactone (PCL) disks to that of PLL-HADN coated PCL disks while articulated against cartilage using a ring-on-disk geometry and a lubricant solution consisting of native synovial fluid components including rhPRG4. The PLL-HADN coating effectively immobilized rhPRG4. The surface roughness of PCL disks significantly increased while the water contact angle significantly decreased after application of the coating. The average CoF measured during the first minute of bare PCL against cartilage exceeded twice the CoF of the PLL-HADN coated PCL against cartilage. After 60 min, the CoF reached equilibrium values which were still significantly higher for bare PCL compared to coated PCL. The present study demonstrated that PCL can effectively be coated with PLL-HADN. Additionally, this coating reduces the friction between PCL and cartilage when a PRG4-rich lubricant is used, similar to the lubricating surface of native cartilage. This makes PLL-HADN coating a promising application to improve the clinical success of PCL-based cartilage resurfacing implants.</p
Constraints on ship NOx emissions in Europe using GEOS-Chem and OMI satellite NO2 observations
We present a top-down ship NOx emission inventory for the Baltic Sea, the North Sea, the Bay of Biscay and the Mediterranean Sea based on satellite-observed tropospheric NO2 columns of the Ozone Monitoring Instrument (OMI) for 2005–2006. We improved the representation of ship emissions in the GEOS-Chem chemistry transport model, and compared simulated NO2 columns to consistent satellite observations. Relative differences between simulated and observed NO2 columns have been used to constrain ship emissions in four European seas (the Baltic Sea, the North Sea, the Bay of Biscay and the Mediterranean Sea) using a mass-balance approach, and accounting for nonlinear sensitivities to changing emissions in both model and satellite retrieval. These constraints are applied to 39% of total top-down European ship NOx emissions, which amount to 0.96 TgN for 2005, and 1.0 TgN for 2006 (11–15% lower than the bottom-up EMEP ship emission inventory). Our results indicate that EMEP emissions in the Mediterranean Sea are too high (by 60 %) and misplaced by up to 150 km, which can have important consequences for local air quality simulations. In the North Sea ship track, our top-down emissions amount to 0.05 TgN for 2005 (35% lower than EMEP). Increased top-down emissions were found for the Baltic Sea and the Bay of Biscay ship tracks, with totals in these tracks of 0.05 TgN (131% higher than EMEP) and 0.08 TgN for 2005 (128% higher than EMEP), respectively. Our study explicitly accounts for the (non-linear) sensitivity of satellite retrievals to changes in the a priori NO2 profiles, as satellite observations are never fully independent of model information (i.e. assumptions on vertical NO2 profiles). Our study provides for the first time a space-based, top-down ship NOx emission inventory, and can serve as a framework for future studies to constrain ship emissions using satellite NO2 observations in other seas
- …