614 research outputs found

    A shared mechanism of muscle wasting in cancer and Huntington's disease.

    Get PDF
    Skeletal muscle loss and dysfunction in aging and chronic diseases is one of the major causes of mortality in patients, and is relevant for a wide variety of diseases such as neurodegeneration and cancer. Muscle loss is accompanied by changes in gene expression and metabolism that lead to contractile impairment and likely affect whole-body metabolism and function. The changes may be caused by inactivity, inflammation, age-related factors or unbalanced nutrition. Although links with skeletal muscle loss have been found in diseases with disparate aetiologies, for example both in Huntingtons disease (HD) and cancer cachexia, the outcome is a similar impairment and mortality. This short commentary aims to summarize recent achievements in the identification of common mechanisms leading to the skeletal muscle wasting syndrome seen in diseases as different as cancer and HD. The latter is the most common hereditary neurodegenerative disorder and muscle wasting is an important component of its pathology. In addition, possible therapeutic strategies for anti-cachectic treatment will be also discussed in the light of their translation into possible therapeutic approaches for HD

    Asynchronous Games over Tree Architectures

    Get PDF
    We consider the task of controlling in a distributed way a Zielonka asynchronous automaton. Every process of a controller has access to its causal past to determine the next set of actions it proposes to play. An action can be played only if every process controlling this action proposes to play it. We consider reachability objectives: every process should reach its set of final states. We show that this control problem is decidable for tree architectures, where every process can communicate with its parent, its children, and with the environment. The complexity of our algorithm is l-fold exponential with l being the height of the tree representing the architecture. We show that this is unavoidable by showing that even for three processes the problem is EXPTIME-complete, and that it is non-elementary in general

    An Exponential Lower Bound for the Latest Deterministic Strategy Iteration Algorithms

    Full text link
    This paper presents a new exponential lower bound for the two most popular deterministic variants of the strategy improvement algorithms for solving parity, mean payoff, discounted payoff and simple stochastic games. The first variant improves every node in each step maximizing the current valuation locally, whereas the second variant computes the globally optimal improvement in each step. We outline families of games on which both variants require exponentially many strategy iterations

    Local Strategy Improvement for Parity Game Solving

    Full text link
    The problem of solving a parity game is at the core of many problems in model checking, satisfiability checking and program synthesis. Some of the best algorithms for solving parity game are strategy improvement algorithms. These are global in nature since they require the entire parity game to be present at the beginning. This is a distinct disadvantage because in many applications one only needs to know which winning region a particular node belongs to, and a witnessing winning strategy may cover only a fractional part of the entire game graph. We present a local strategy improvement algorithm which explores the game graph on-the-fly whilst performing the improvement steps. We also compare it empirically with existing global strategy improvement algorithms and the currently only other local algorithm for solving parity games. It turns out that local strategy improvement can outperform these others by several orders of magnitude

    Imitation in Large Games

    Full text link
    In games with a large number of players where players may have overlapping objectives, the analysis of stable outcomes typically depends on player types. A special case is when a large part of the player population consists of imitation types: that of players who imitate choice of other (optimizing) types. Game theorists typically study the evolution of such games in dynamical systems with imitation rules. In the setting of games of infinite duration on finite graphs with preference orderings on outcomes for player types, we explore the possibility of imitation as a viable strategy. In our setup, the optimising players play bounded memory strategies and the imitators play according to specifications given by automata. We present algorithmic results on the eventual survival of types

    Blackwell-Optimal Strategies in Priority Mean-Payoff Games

    Full text link
    We examine perfect information stochastic mean-payoff games - a class of games containing as special sub-classes the usual mean-payoff games and parity games. We show that deterministic memoryless strategies that are optimal for discounted games with state-dependent discount factors close to 1 are optimal for priority mean-payoff games establishing a strong link between these two classes

    The Complexity of Nash Equilibria in Simple Stochastic Multiplayer Games

    Get PDF
    We analyse the computational complexity of finding Nash equilibria in simple stochastic multiplayer games. We show that restricting the search space to equilibria whose payoffs fall into a certain interval may lead to undecidability. In particular, we prove that the following problem is undecidable: Given a game G, does there exist a pure-strategy Nash equilibrium of G where player 0 wins with probability 1. Moreover, this problem remains undecidable if it is restricted to strategies with (unbounded) finite memory. However, if mixed strategies are allowed, decidability remains an open problem. One way to obtain a provably decidable variant of the problem is restricting the strategies to be positional or stationary. For the complexity of these two problems, we obtain a common lower bound of NP and upper bounds of NP and PSPACE respectively.Comment: 23 pages; revised versio

    Perfect Information Stochastic Priority Games

    Get PDF
    International audienceWe introduce stochastic priority games - a new class of perfect information stochastic games. These games can take two different, but equivalent, forms. In stopping priority games a play can be stopped by the environment after a finite number of stages, however, infinite plays are also possible. In discounted priority games only infinite plays are possible and the payoff is a linear combination of the classical discount payoff and of a limit payoff evaluating the performance at infinity. Shapley games and parity games are special extreme cases of priority games
    • 

    corecore