46 research outputs found

    A Molecular-Rotor Device for Nonvolatile High-Density Memory Applications

    Get PDF
    A novel memory device based on an electrically driven molecular rotor was fabricated and demonstrated to have bistable switching effects. The device showed an on/off ratio of approximately 10^4, a read window of about 2.5 V, and retention performance of greater than 10^4 s. The analysis of the device I–V characteristics suggests the source of the observed switching effects to be the redox-induced ligand rotation around the copper metal center, which is consistent with the observed temperature dependence of the switching behavior. This organic monolayer device holds a potential for nonvolatile high-density memory applications due to its scalability and reduced cost

    Room temperature negative differential resistance of a monolayer molecular rotor device

    Get PDF
    An electrically driven molecular rotor device comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly doped P+Si substrate was fabricated. Current-voltage spectroscopy revealed a temperature-dependent negative differential resistance (NDR) associated with the device. Time-dependent density functional theory suggests the source of the observed NDR to be redox-induced ligand rotation around the copper metal center, an explanation consistent with the proposed energy diagram of the device. An observed temperature dependence of the NDR behavior further supports this hypothesis

    Folding of a donor–acceptor polyrotaxane by using noncovalent bonding interactions

    Get PDF
    Mechanically interlocked compounds, such as bistable catenanes and bistable rotaxanes, have been used to bring about actuation in nanoelectromechanical systems (NEMS) and molecular electronic devices (MEDs). The elaboration of the structural features of such rotaxanes into macromolecular materials might allow the utilization of molecular motion to impact their bulk properties. We report here the synthesis and characterization of polymers that contain π electron-donating 1,5-dioxynaphthalene (DNP) units encircled by cyclobis(paraquat-p-phenylene) (CBPQT4+), a π electron-accepting tetracationic cyclophane, synthesized by using the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The polyrotaxanes adopt a well defined “folded” secondary structure by virtue of the judicious design of two DNP-containing monomers with different binding affinities for CBPQT4+. This efficient approach to the preparation of polyrotaxanes, taken alongside the initial investigations of their chemical properties, sets the stage for the preparation of a previously undescribed class of macromolecular architectures

    Circadian Clocks as Modulators of Metabolic Comorbidity in Psychiatric Disorders

    Full text link
    Psychiatric disorders such as schizophrenia, bipolar disorder, and major depressive disorder are often accompanied by metabolic dysfunction symptoms, including obesity and diabetes. Since the circadian system controls important brain systems that regulate affective, cognitive, and metabolic functions, and neuropsychiatric and metabolic diseases are often correlated with disturbances of circadian rhythms, we hypothesize that dysregulation of circadian clocks plays a central role in metabolic comorbidity in psychiatric disorders. In this review paper, we highlight the role of circadian clocks in glucocorticoid, dopamine, and orexin/melanin-concentrating hormone systems and describe how a dysfunction of these clocks may contribute to the simultaneous development of psychiatric and metabolic symptoms

    Metal doped polyaniline as neuromorphic circuit elements for in-materia computing

    No full text
    ABSTRACTPolyaniline-based atomic switches are material building blocks whose nanoscale structure and resultant neuromorphic character provide a new physical substrate for the development next-generation, nanoarchitectonic-enabled computing systems. Metal ion-doped devices consisting of a Ag/metal ion doped polyaniline/Pt sandwich structure were fabricated using an in situ wet process. The devices exhibited repeatable resistive switching between high (ON) and low (OFF) conductance states in both Ag+ and Cu2+ ion-doped devices. The threshold voltage for switching was>0.8 V and average ON/OFF conductance ratios (30 cycles for 3 samples) were 13 and 16 for Ag+ and Cu2+ devices, respectively. The ON state duration was determined by the decay to an OFF state after pulsed voltages of differing amplitude and frequency. The switching behaviour is analagous to short-term (STM) and long-term (LTM) memories of biological synapses. Memristive behaviour and evidence of quantized conductance were also observed and interpreted in terms of metal filament formation bridging the metal doped polymer layer. The successful realization of these properties within physical material systems indicate polyaniline frameworks as suitable neuromorphic substrates for in materia computing

    Self-organized atomic switch networks

    No full text
    corecore