49,245 research outputs found
Universal zero-bias conductance through a quantum wire side-coupled to a quantum dot
A numerical renormalization-group study of the conductance through a quantum
wire side-coupled to a quantum dot is reported. The temperature and the
dot-energy dependence of the conductance are examined in the light of a
recently derived linear mapping between the Kondo-regime temperature-dependent
conductance and the universal function describing the conductance for the
symmetric Anderson model of a quantum wire with an embedded quantum dot. Two
conduction paths, one traversing the wire, the other a bypass through the
quantum dot, are identified. A gate potential applied to the quantum wire is
shown to control the flow through the bypass. When the potential favors
transport through the wire, the conductance in the Kondo regime rises from
nearly zero at low temperatures to nearly ballistic at high temperatures. When
it favors the dot, the pattern is reversed: the conductance decays from nearly
ballistic to nearly zero. When the fluxes through the two paths are comparable,
the conductance is nearly temperature-independent in the Kondo regime, and a
Fano antiresonance in the fixed-temperature plot of the conductance as a
function of the dot energy signals interference. Throughout the Kondo regime
and, at low temperatures, even in the mixed-valence regime, the numerical data
are in excellent agreement with the universal mapping.Comment: 12 pages, with 9 figures. Submitted to PR
Non-perturbative gadget for topological quantum codes
Many-body entangled systems, in particular topologically ordered spin systems
proposed as resources for quantum information processing tasks, often involve
highly non-local interaction terms. While one may approximate such systems
through two-body interactions perturbatively, these approaches have a number of
drawbacks in practice. Here, we propose a scheme to simulate many-body spin
Hamiltonians with two-body Hamiltonians non-perturbatively. Unlike previous
approaches, our Hamiltonians are not only exactly solvable with exact ground
state degeneracy, but also support completely localized quasi-particle
excitations, which are ideal for quantum information processing tasks. Our
construction is limited to simulating the toric code and quantum double models,
but generalizations to other non-local spin Hamiltonians may be possible.Comment: 13 pages, 8 figures, PRL Accepte
Beltrami-like fields created by baroclinic effect in two-fluid plasmas
A theory of two-dimensional plasma evolution with Beltrami-like flow and
field due to baroclinic effect has been presented. Particular solution of the
nonlinear two-fluid equations is obtained. This simple model can explain the
generation of magnetic field without assuming the presence of a seed in the
system. Coupled field and flow naturally grow together. The theory has been
applied to estimate B-field in laser-induced plasmas and the result is in good
agreement with experimental values.Comment: 3 page
A model study of cooperative binding of ionic surfactants to oppositely charged flexible polyions
A novel statistical model for the cooperative binding of monomeric ligands to
a linear lattice is developed to study the interaction of ionic surfactant
molecules with flexible polyion chain in dilute solution. Electrostatic binding
of a ligand to a site on the polyion and hydrophobic associations between the
neighboring bound ligands are assumed to be stochastic processes. Ligand
association separated by several lattice points within defined width is
introduced for the flexible polyion. Model calculations by the Monte Carlo
method are carried out to investigate the binding behavior. The hypothesis on
the ligand association and its width on the chain are of importance in
determining critical aggregation concentration and binding isotherm. The
results are reasonable for the interpretations of several surfactant-flexible
polyion binding experiments. The implications of the approach are presented and
discussed.Comment: 11 pages, 9 figure
Dynamic Pairing Effects on Low-Frequency Modes of Excitation in Deformed Mg Isotopes close to the Neutron Drip Line
Low-frequency quadrupole vibrations in deformed Mg are studied
by means of the deformed Quasiparticle-RPA based on the coordinate-space
Hartree-Fock-Bogoliubov formalism. Strongly collective and
excitation modes (carrying 10-20 W.u.) are obtained at about 3 MeV. It
is found that dynamical pairing effects play an essential role in generating
these modes. It implies that the lowest excitation modes are
particularly sensitive indicators of dynamical pairing correlations in deformed
nuclei near the neutron drip line.Comment: Talk given at Int. Conference "Finite Fermionic Systems: Nilsson
Model 50 Years", Lund, Sweden, June 14-18, 200
Constraints on the origin of the ultra-high energy cosmic-rays using cosmic diffuse neutrino flux limits: An analytical approach
Astrophysical neutrinos are expected to be produced in the interactions of
ultra-high energy cosmic-rays with surrounding photons. The fluxes of the
astrophysical neutrinos are highly dependent on the characteristics of the
cosmic-ray sources, such as their cosmological distributions. We study possible
constraints on the properties of cosmic-ray sources in a model-independent way
using experimentally obtained diffuse neutrino flux above 100 PeV. The
semi-analytic formula is derived to estimate the cosmogenic neutrino fluxes as
functions of source evolution parameter and source extension in redshift. The
obtained formula converts the upper-limits on the neutrino fluxes into the
constraints on the cosmic-ray sources. It is found that the recently obtained
upper-limit on the cosmogenic neutrinos by IceCube constrains the scenarios
with strongly evolving ultra-high energy cosmic-ray sources, and the future
limits from an 1 km^3 scale detector are able to further constrain the
ultra-high energy cosmic-rays sources with evolutions comparable to the cosmic
star formation rate.Comment: 9 pages, 3 figures and 1 table. Accepted by Phys. Rev.
Recommended from our members
Derivation of globally averaged lunar heat flow from the local heat flow values and the Thorium distribution at the surface: expected improvement by the LUNAR-A Mission
The relationship between the Th abundance and the heat flow data of the Apollo sites and the LUANR-A sites, where the Th concentrations are in the wide range from 1 ppm to 6 ppm, will allow for a more precise estimation of the averaged heat flow value
- …
