1,431 research outputs found

    A Three-Term Conjugate Gradient Method with Sufficient Descent Property for Unconstrained Optimization

    Get PDF
    Conjugate gradient methods are widely used for solving large-scale unconstrained optimization problems, because they do not need the storage of matrices. In this paper, we propose a general form of three-term conjugate gradient methods which always generate a sufficient descent direction. We give a sufficient condition for the global convergence of the proposed general method. Moreover, we present a specific three-term conjugate gradient method based on the multi-step quasi-Newton method. Finally, some numerical results of the proposed method are given

    Flexible substrate for printed wiring

    Get PDF
    A very flexible substrate for printed wiring is disclosed which is composed of a blend of phenoxy resin-polyisocyanate-brominated epoxy resin in which the equivalent ration of the functional groups is hydroxyl grouped: isocyanate group: epoxy group = 1:0.2 to 2:0.5 to 3. The product has outstanding solder resistance and is applied to metal without using adhesives

    Flexible composite film for printed circuit board

    Get PDF
    A flexible printed circuit for a printed circuit board in which layers of reaction product composed of a combination of phenoxy resin - polyisocyanate - brominated epoxy resin, and in which the equivalent ratio of those functional groups is hydroxyl group: isocyanate group: epoxy group - 1 : 0.2 to 2 : 0.5 to 3 are laminated on at least one side of saturated polyester film is discussed

    The Changes in Mechanical Energy During the Giant Swing Backward on the Horizontal Bar

    Get PDF
    In the giant swing backward, mechanical energy of the whole body is decreased due to friction between gymnast hands and the bar, and to air resistance. To complete the rotation, the gymnast has to do muscular work to offset these energy losses. Total mechanical energy changes with the relationship between energy loss and muscular work. Therefore, for biomechanical investigation of the giant swing backward, it is important to have an accurate measure of the mechanical energy changes of the whole body. Although there are many studies of energetics of the human fundamental movement such as walking and running, the mechanical energy changes of the whole body have not been reported during the giant swing backward on the horizontal bar. The purpose of this study is to report the mechanical energy changes of the whole body, and to identify the muscular work donc by the gymnast during the giant swing backward on the horizontal bar

    Pupil size is modulated by the size of equal-luminance gratings

    Get PDF
    © 2020 The Authors. Pupil size changes with light. For this reason, researchers studying the effect of attention, contextual processing, and arousal on the pupillary response have matched the mean luminance of their stimuli across conditions to eliminate the contribution of differences in light levels. Here, we argue that the match of mean luminance is not enough. In Experiment 1, we presented a circular sinewave grating on a gray background for 2 seconds. The area of the grating could be 3°, 6°, or 9°. The mean luminance of each grating was equal to the luminance of the gray background, such that regardless of the size of the grating there was no change in mean luminance between conditions. Participants were asked to fixate the center of the grating and passively view it. We found that in all size conditions, there was a pupil constriction starting at about 300 ms after stimulus onset, and the pupil constriction increased with the size of the grating. In Experiment 2, when a small grating was presented immediately after the presentation of a large grating (or vice versa), the pupil constriction changed accordingly. In Experiment 3, we replicated Experiment 1 but had the subjects perform an attention-demanding fixation task in one session, and passively view the stimuli in the other. We found that the main effect of task was not significant. In sum, our results show that stimulus size can modulate pupil size robustly and steadily even when the luminance is matched across the different stimuli

    Numerical simulations of expanding supershells in dwarf irregular galaxies. I. Application to Holmberg I

    Full text link
    Numerical hydrodynamical modelling of supernova-driven shell formation is performed with a purpose to reproduce a giant HI ring (diameter 1.7 kpc) in the dwarf irregular galaxy Holmberg I (Ho I). We find that the contrast in HI surface density between the central HI depression and the ring is sensitive to the shape of the gravitational potential. This circumstance can be used to constrain the total mass (including the dark matter halo) of nearly face-on dwarf irregulars. We consider two models of Ho I, which differ by an assumed mass of the dark matter halo M_h. The contrast in HI surface density between the central HI depression and the ring, as well as the lack of gas expansion in the central hole, are better reproduced by the model with a massive halo of M_h=6.0*10^9 M_sun than by that with a small halo of M_h=4.0*10^8 M_sun, implying that Ho I is halo-dominated. Assuming the halo mass of 6.0*10^9 M_sum, we determine the mechanical energy required to form the observed ring equal to (3.0 +- 0.5)*10^53 ergs, equivalent 300+-50 Type II supernovae. The inclination of Ho I is constrained to 15-20 degrees by comparing the modelled HI spectrum and channel maps with those observed.Comment: 11 pages, 11 figures, accepted for publication in Astronomy and Astrophysic

    Experimental study of energy transport in thin Al and Au foils irradiated with a 263-nm laser

    Full text link
    Copyright 1989 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Journal of Applied Physics, 65(12), 5068-5071, 1989 and may be found at http://dx.doi.org/10.1063/1.34318

    Compound effect of EHD and surface roughness in pool boiling and CHF with R-123

    Get PDF
    This article is a post-print version of the fianl published article which may be accessed at the link below.Saturated pool boiling of R-123 at 1 bar, including the critical heat flux (CHF), was enhanced by modifying the surface characteristics and applying a high intensity electrostatic field, the latter termed electrohydrodynamic (and abbreviated EHD) enhancement. The heat flux was varied from very low values in the natural convection regime up to CHF. Experiments were performed with increasing and decreasing heat flux to study boiling hysteresis without and with EHD. Boiling occurred on the sand blasted surface of a cylindrical copper block with embedded electrical heating elements, with standardized surface parameter Pa = 3.5 ÎŒm. The electric field was generated by a potential of 5 kV to 25 kV, applied through a 40 mm diameter circular electrode of ss-304 wire mesh, aperture size 5.1 mm, located at distances of 5 - 60 mm from the surface, with most of the data obtained for 20 mm. The data for the rough surface were compared with earlier data for a smooth surface and indicated a significant increase in the heat transfer rates. EHD produced a further increase in the heat transfer rates, particularly at low heat flux values and near the CHF. Boiling hysteresis was reduced progressively by EHD and eliminated at high field strength.This work was supported by Government of Pakistan under a scholarship programme
    • 

    corecore