52,241 research outputs found

    Liquid rocket metal tanks and tank components

    Get PDF
    Significant guidelines are presented for the successful design of aerospace tanks and tank components, such as expulsion devices, standpipes, and baffles. The state of the art is reviewed, and the design criteria are presented along with recommended practices. Design monographs are listed

    Phase relaxation of Faraday surface waves

    Full text link
    Surface waves on a liquid air interface excited by a vertical vibration of a fluid layer (Faraday waves) are employed to investigate the phase relaxation of ideally ordered patterns. By means of a combined frequency-amplitude modulation of the excitation signal a periodic expansion and dilatation of a square wave pattern is generated, the dynamics of which is well described by a Debye relaxator. By comparison with the results of a linear theory it is shown that this practice allows a precise measurement of the phase diffusion constant.Comment: 5 figure

    Exploring the Oxygen Order in Hg-1223 and Hg-1201 by 199Hg MAS NMR

    Full text link
    We demonstrate the use of a high-resolution solid-state fast (45 kHz) magic angle spinning (MAS) NMR for mapping the oxygen distribution in Hg-based cuprate superconductors. We identify observed three peaks in 199Hg spectrum as belonging to the different chemical environments in the HgO? layer with no oxygen neighbors, single oxygen neighbor, and two oxygen neighbors. We discuss observed differences between Hg-1201 and Hg-1223 materials.Comment: 4 pages, 2 figures included. Submitted to NATO Advanced Research Workshop Proceedings (Miami January 2004

    An ERTS-1 investigation for Lake Ontario and its basin

    Get PDF
    The author has identified the following significant results. Methods of manual, semi-automatic, and automatic (computer) data processing were evaluated, as were the requirements for spatial physiographic and limnological information. The coupling of specially processed ERTS data with simulation models of the watershed precipitation/runoff process provides potential for water resources management. Optimal and full use of the data requires a mix of data processing and analysis techniques, including single band editing, two band ratios, and multiband combinations. A combination of maximum likelihood ratio and near-IR/red band ratio processing was found to be particularly useful

    Epitaxial growth of deposited amorphous layer by laser annealing

    Get PDF
    We demonstrate that a single short pulse of laser irradiation of appropriate energy is capable of recrystallizing in open air an amorphous Si layer deposited on a (100) single-crystal substrate into an epitaxial layer. The laser pulse annealing technique is shown to overcome the interfacial oxide obstacle which usually leads to polycrystalline formation in normal thermal annealing

    The Complexity of Computing the Size of an Interval

    Get PDF
    Given a p-order A over a universe of strings (i.e., a transitive, reflexive, antisymmetric relation such that if (x, y) is an element of A then |x| is polynomially bounded by |y|), an interval size function of A returns, for each string x in the universe, the number of strings in the interval between strings b(x) and t(x) (with respect to A), where b(x) and t(x) are functions that are polynomial-time computable in the length of x. By choosing sets of interval size functions based on feasibility requirements for their underlying p-orders, we obtain new characterizations of complexity classes. We prove that the set of all interval size functions whose underlying p-orders are polynomial-time decidable is exactly #P. We show that the interval size functions for orders with polynomial-time adjacency checks are closely related to the class FPSPACE(poly). Indeed, FPSPACE(poly) is exactly the class of all nonnegative functions that are an interval size function minus a polynomial-time computable function. We study two important functions in relation to interval size functions. The function #DIV maps each natural number n to the number of nontrivial divisors of n. We show that #DIV is an interval size function of a polynomial-time decidable partial p-order with polynomial-time adjacency checks. The function #MONSAT maps each monotone boolean formula F to the number of satisfying assignments of F. We show that #MONSAT is an interval size function of a polynomial-time decidable total p-order with polynomial-time adjacency checks. Finally, we explore the related notion of cluster computation.Comment: This revision fixes a problem in the proof of Theorem 9.

    Searching for Dark Matter Annihilation in the Smith High-Velocity Cloud

    Get PDF
    Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use gamma-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant gamma-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation cross section assuming a spatially-extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section (∼3×10−26cm3s−1\sim 3\times10^{-26}{\rm cm}^{3}{\rm s}^{-1}) for dark matter masses ≲30\lesssim 30 GeV annihilating via the bbˉb \bar b or τ+τ−\tau^{+}\tau^{-} channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.Comment: 7 pages, 5 figures. Published in Ap
    • …
    corecore