125,505 research outputs found

    Electroweakino constraints from LHC data

    Get PDF
    We investigate the sensitivity of existing LHC searches to the charginos and neutralinos of the MSSM when all the other superpartners are decoupled. In this limit, the underlying parameter space reduces to a simple four-dimensional set {M1,M2,μ,tanβ}\{M_1,\,M_2,\,\mu,\,\tan\beta\}. We examine the constraints placed on this parameter space by a broad range of LHC searches taking into account the full set of relevant production and decay channels. We find that the exclusions implied by these searches exceed existing limits from LEP only for smaller values of the Bino mass M1150M_1 \lesssim 150 GeV. Our results have implications for MSSM dark matter and electroweak baryogenesis.Comment: 30 pages, 15 figure

    XB-70 flight test data comparisons with simulation predictions of inlet unstart and buzz

    Get PDF
    XB-70 flight test data comparison with simulated predictions of inlet unstart and buz

    Extraction of black hole coalescence waveforms from noisy data

    Full text link
    We describe an independent analysis of LIGO data for black hole coalescence events. Gravitational wave strain waveforms are extracted directly from the data using a filtering method that exploits the observed or expected time-dependent frequency content. Statistical analysis of residual noise, after filtering out spectral peaks (and considering finite bandwidth), shows no evidence of non-Gaussian behaviour. There is also no evidence of anomalous causal correlation between noise signals at the Hanford and Livingston sites. The extracted waveforms are consistent with black hole coalescence template waveforms provided by LIGO. Simulated events, with known signals injected into real noise, are used to determine uncertainties due to residual noise and demonstrate that our results are unbiased. Conceptual and numerical differences between our RMS signal-to-noise ratios (SNRs) and the published matched-filter detection SNRs are discussed.Comment: 15 pages, 11 figures. Version accepted for publicatio

    Digital video display system

    Get PDF
    System displays image data in real time on 120,000-element raster scan with 2, 4, or 8 shades of grey. Designed for displaying planetary range Doppler data, system can be used for X-Y plotting, displaying alphanumerics, and providing image animation

    Recognition of finite exceptional groups of Lie type

    Full text link
    Let qq be a prime power and let GG be an absolutely irreducible subgroup of GLd(F)GL_d(F), where FF is a finite field of the same characteristic as \F_q, the field of qq elements. Assume that GG(q)G \cong G(q), a quasisimple group of exceptional Lie type over \F_q which is neither a Suzuki nor a Ree group. We present a Las Vegas algorithm that constructs an isomorphism from GG to the standard copy of G(q)G(q). If G≇3D4(q)G \not\cong {}^3 D_4(q) with qq even, then the algorithm runs in polynomial time, subject to the existence of a discrete log oracle

    Extending LHC Coverage to Light Pseudoscalar Mediators and Coy Dark Sectors

    Get PDF
    Many dark matter models involving weakly interacting massive particles (WIMPs) feature new, relatively light pseudoscalars that mediate dark matter pair annihilation into Standard Model fermions. In particular, simple models of this type can explain the gamma ray excess originating in the Galactic Center as observed by the Fermi Large Area Telescope. In many cases the pseudoscalar's branching ratio into WIMPs is suppressed, making these states challenging to detect at colliders through standard dark matter searches. Here, we study the prospects for observing these light mediator states at the LHC without exploiting missing energy techniques. While existing searches effectively probe pseudoscalars with masses between 5 - 14 GeV and above 90 GeV, the LHC reach can be extended to cover much of the interesting parameter space in the intermediate 20 - 80 GeV mass range in which the mediator can have appreciable Yukawa-like couplings to Standard Model fermions but would have escaped detection by LEP and other experiments. Models explaining the Galactic Center excess via a light pseudoscalar mediator can give rise to a promising signal in this regime through the associated production of the mediator with bottom quarks while satisfying all other existing constraints. We perform an analysis of the backgrounds and trigger efficiencies, detailing the cuts that can be used to extract the signal. A significant portion of the otherwise unconstrained parameter space of these models can be conclusively tested at the 13 TeV LHC with 100 fb1^{-1}, and we encourage the ATLAS and CMS collaborations to extend their existing searches to this mass range.Comment: 27 pages + 3 appendices, 20 figures, 7 table

    Communications link for SDS 900 series computers

    Get PDF
    High speed, self-clocking single channel control and data link apparatus interfaces between two computers. This combined system reduces data errors
    corecore