3,534 research outputs found

    Two qubits can be entangled in two distinct temperature regions

    Full text link
    We have found that for a wide range of two-qubit Hamiltonians the canonical-ensemble thermal state is entangled in two distinct temperature regions. In most cases the ground state is entangled; however we have also found an example where the ground state is separable and there are still two regions. This demonstrates that the qualitative behavior of entanglement with temperature can be much more complicated than might otherwise have been expected; it is not simply determined by the entanglement of the ground state, even for the simple case of two qubits. Furthermore, we prove a finite bound on the number of possible entangled regions for two qubits, thus showing that arbitrarily many transitions from entanglement to separability are not possible. We also provide an elementary proof that the spectrum of the thermal state at a lower temperature majorizes that at a higher temperature, for any Hamiltonian, and use this result to show that only one entangled region is possible for the special case of Hamiltonians without magnetic fields.Comment: 6 pages, 4 figures, many new result

    Mobilization of the platinum group elements by low-temperature fluids: Implications for mineralization and the iridium controversy

    Get PDF
    Geochemical investigations on the widely dispersed Late Proterozoic Acraman impact ejecta horizon and its host marine shales in the Adelaide Geosyncline provide strong evidence for low-temperature mobilization of the platinum group elements (PGE), including Ir. The ejecta horizon was formed when the middle Proterozoic dacitic volcanics in the Gawler Ranges, central South Australia, were impacted by a very large (ca. 4 km) meteorite. The resulting structure, now represented by Lake Acraman, is Australia's largest meteorite impact structure. Debris from the impact was blasted for many hundreds of kilometers, some falling into the shallow sea of the Adelaide Geosyncline, some 300 km to the east of the impact site

    Quantum Technology: The Second Quantum Revolution

    Full text link
    We are currently in the midst of a second quantum revolution. The first quantum revolution gave us new rules that govern physical reality. The second quantum revolution will take these rules and use them to develop new technologies. In this review we discuss the principles upon which quantum technology is based and the tools required to develop it. We discuss a number of examples of research programs that could deliver quantum technologies in coming decades including; quantum information technology, quantum electromechanical systems, coherent quantum electronics, quantum optics and coherent matter technology.Comment: 24 pages and 6 figure

    Cold Atom Physics Using Ultra-Thin Optical Fibers: Light-Induced Dipole Forces and Surface Interactions

    Get PDF
    The strong evanescent field around ultra-thin unclad optical fibers bears a high potential for detecting, trapping, and manipulating cold atoms. Introducing such a fiber into a cold atom cloud, we investigate the interaction of a small number of cold Caesium atoms with the guided fiber mode and with the fiber surface. Using high resolution spectroscopy, we observe and analyze light-induced dipole forces, van der Waals interaction, and a significant enhancement of the spontaneous emission rate of the atoms. The latter can be assigned to the modification of the vacuum modes by the fiber.Comment: 4 pages, 4 figure

    Quantum reflection of atoms from a solid surface at normal incidence

    Full text link
    We observed quantum reflection of ultracold atoms from the attractive potential of a solid surface. Extremely dilute Bose-Einstein condensates of ^{23}Na, with peak density 10^{11}-10^{12}atoms/cm^3, confined in a weak gravito-magnetic trap were normally incident on a silicon surface. Reflection probabilities of up to 20 % were observed for incident velocities of 1-8 mm/s. The velocity dependence agrees qualitatively with the prediction for quantum reflection from the attractive Casimir-Polder potential. Atoms confined in a harmonic trap divided in half by a solid surface exhibited extended lifetime due to quantum reflection from the surface, implying a reflection probability above 50 %.Comment: To appear in Phys. Rev. Lett. (December 2004)5 pages, 4 figure

    Entanglement of indistinguishable particles in condensed matter physics

    Get PDF
    The concept of entanglement in systems where the particles are indistinguishable has been the subject of much recent interest and controversy. In this paper we study the notion of entanglement of particles introduced by Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] in several specific physical systems, including some that occur in condensed matter physics. The entanglement of particles is relevant when the identical particles are itinerant and so not distinguished by their position as in spin models. We show that entanglement of particles can behave differently to other approaches that have been used previously, such as entanglement of modes (occupation-number entanglement) and the entanglement in the two-spin reduced density matrix. We argue that the entanglement of particles is what could actually be measured in most experimental scenarios and thus its physical significance is clear. This suggests entanglement of particles may be useful in connecting theoretical and experimental studies of entanglement in condensed matter systems.Comment: 13 pages, 6 figures, comments welcome, published version (minor changes, added references

    Effect of an atom on a quantum guided field in a weakly driven fiber-Bragg-grating cavity

    Full text link
    We study the interaction of an atom with a quantum guided field in a weakly driven fiber-Bragg-grating (FBG) cavity. We present an effective Hamiltonian and derive the density-matrix equations for the combined atom-cavity system. We calculate the mean photon number, the second-order photon correlation function, and the atomic excited-state population. We show that, due to the confinement of the guided cavity field in the fiber cross-section plane and in the space between the FBG mirrors, the presence of the atom in the FBG cavity can significantly affect the mean photon number and the photon statistics even though the cavity finesse is moderate, the cavity is long, and the probe field is weak.Comment: Accepted for Phys. Rev.

    Continuation Sheaves in Dynamics: Sheaf Cohomology and Bifurcation

    Full text link
    Continuation of algebraic structures in families of dynamical systems is described using category theory, sheaves, and lattice algebras. Well-known concepts in dynamics, such as attractors or invariant sets, are formulated as functors on appropriate categories of dynamical systems mapping to categories of lattices, posets, rings or abelian groups. Sheaves are constructed from such functors, which encode data about the continuation of structure as system parameters vary. Similarly, morphisms for the sheaves in question arise from natural transformations. This framework is applied to a variety of lattice algebras and ring structures associated to dynamical systems, whose algebraic properties carry over to their respective sheaves. Furthermore, the cohomology of these sheaves are algebraic invariants which contain information about bifurcations of the parametrized systems

    On the Squeezed Number States and their Phase Space Representations

    Get PDF
    We compute the photon number distribution, the Q distribution function and the wave functions in the momentum and position representation for a single mode squeezed number state using generating functions which allow to obtain any matrix element in the squeezed number state representation from the matrix elements in the squeezed coherent state representation. For highly squeezed number states we discuss the previously unnoted oscillations which appear in the Q function. We also note that these oscillations can be related to the photon-number distribution oscillations and to the momentum representation of the wave function.Comment: 16 pages, 9 figure
    • …
    corecore