1,153 research outputs found

    Universal behavior of internal friction in glasses below T : anharmonicity vs relaxation

    Full text link
    Comparison of the internal friction at hypersonic frequencies between a few K and the glass transition temperature Tg for various glasses brings out general features. At low temperature, internal friction is only weakly dependent on the material. At high temperature but still below Tg the internal friction for strong glasses shows a T-independent plateau in a very wide domain of temperature; in contrast, for fragile glass, a nearly linear variation of internal friction with T is observed. Anharmonicity appears dominant over thermally activated relaxational processes at high temperature.Comment: accepted in Physical Review

    Observation of the onset of strong scattering on high frequency acoustic phonons in densified silica glass

    Full text link
    The linewidth of longitudinal acoustic waves in densified silica glass is obtained by inelastic x-ray scattering. It increases with a high power alpha of the frequency up to a crossover where the waves experience strong scattering. We find that \alpha is at least 4, and probably larger. Resonance and hybridization of acoustic waves with the boson-peak modes seems to be a more likely explanation for these findings than Rayleigh scattering from disorder.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Letter

    Scaling the Temperature-dependent Boson Peak of Vitreous Silica with the high-frequency Bulk Modulus derived from Brillouin Scattering Data

    Get PDF
    The position and strength of the boson peak in silica glass vary considerably with temperature TT. Such variations cannot be explained solely with changes in the Debye energy. New Brillouin scattering measurements are presented which allow determining the TT-dependence of unrelaxed acoustic velocities. Using a velocity based on the bulk modulus, scaling exponents are found which agree with the soft-potential model. The unrelaxed bulk modulus thus appears to be a good measure for the structural evolution of silica with TT and to set the energy scale for the soft potentials.Comment: Accepted for publication in Physical Review Letter

    Small Angle Scattering by Fractal Aggregates: A Numerical Investigation of the Crossover Between the Fractal Regime and the Porod Regime

    Full text link
    Fractal aggregates are built on a computer using off-lattice cluster-cluster aggregation models. The aggregates are made of spherical particles of different sizes distributed according to a Gaussian-like distribution characterised by a mean a0a_0 and a standard deviation σ\sigma. The wave vector dependent scattered intensity I(q)I(q) is computed in order to study the influence of the particle polydispersity on the crossover between the fractal regime and the Porod regime. It is shown that, given a0a_0, the location qcq_c of the crossover decreases as σ\sigma increases. The dependence of qcq_c on σ\sigma can be understood from the evolution of the shape of the center-to-center interparticle-distance distribution function.Comment: RevTex, 4 pages + 6 postscript figures, compressed using "uufiles", published in Phys. Rev. B 50, 1305 (1994

    Astrophysical and local constraints on string theory: runaway dilaton models

    Full text link
    One of the clear predictions of string theory is the presence of a dynamical scalar partner of the spin-2 graviton, known as the dilaton. This will violate the Einstein Equivalence Principle, leading to a plethora of possibly observable consequences which is a cosmological context include dynamical dark energy and spacetime variations of nature's fundamental constants. The runaway dilaton scenario of Damour, Piazza and Veneziano is a particularly interesting class of string theory inspired models which can in principle reconcile a massless dilaton with experimental data. Here we use the latest background cosmology observations, astrophysical and laboratory tests of the stability of the fine-structure constant and local tests of the Weak Equivalence Principle to provide updated constraints on this scenario, under various simplifying assumptions. Overall we find consistency with the standard Λ\LambdaCDM paradigm, and we improve the existing constraints on the coupling of the dilaton to baryonic matter by a factor of six, and to the dark sector by a factor of two. At the one sigma level the current data already excludes dark sector couplings of order unity, which would be their natural value.Comment: 7 pages, 4 figures; Phys. Rev. D (in press

    The Boson Peak and its Relation with Acoustic Attenuation in Glasses

    Full text link
    Experimental results on the density of states and on the acoustic modes of glasses in the THz region are compared to the predictions of two categories of models. A recent one, solely based on an elastic instability, does not account for most observations. Good agreement without adjustable parameters is obtained with models including the existence of non-acoustic vibrational modes at THz frequency, providing in many cases a comprehensive picture for a range of glass anomalies.Comment: 4 pages, 3 figures, Physical Review Letters in pres

    Hyper-Raman scattering analysis of the vibrations in vitreous boron oxide

    Full text link
    Hyper-Raman scattering has been measured on vitreous boron oxide, v−v-B2_2O3_3. This spectroscopy, complemented with Raman scattering and infrared absorption, reveals the full set of vibrations that can be observed with light. A mode analysis is performed based on the local D3h_{3h} symmetry of BO3_3 triangles and B3_3O3_3 boroxol rings. The results show that in v−v-B2_2O3_3 the main spectral components can be succesfully assigned using this relatively simple model. In particular, it can be shown that the hyper-Raman boson peak arises from external modes that correspond mainly to librational motions of rigid boroxol rings.Comment: 13 pages, 11 figures, 2 table

    Charge migration engineered by localisation: electron-nuclear dynamics in polyenes and glycine

    No full text
    We demonstrate that charge migration can be ‘engineered’ in arbitrary molecular systems if a single localised orbital – that diabatically follows nuclear displacements – is ionised. Specifically, we describe the use of natural bonding orbitals in Complete Active Space Configuration Interaction (CASCI) calculations to form cationic states with localised charge, providing consistently well-defined initial conditions across a zero point energy vibrational ensemble of molecular geometries. In Ehrenfest dynamics simulations following localised ionisation of -electrons in model polyenes (hexatriene and decapentaene) and -electrons in glycine, oscillatory charge migration can be observed for several femtoseconds before dephasing. Including nuclear motion leads to slower dephasing compared to fixed-geometry electron-only dynamics results. For future work, we discuss the possibility of designing laser pulses that would lead to charge migration that is experimentally observable, based on the proposed diabatic orbital approach

    Electron and nuclear dynamics following ionisation of modified bismethylene-adamantane

    Get PDF
    We have simulated the coupled electron and nuclear dynamics using the Ehrenfest method upon valence ionisation of modified bismethylene-adamantane (BMA) molecules where there is an electron transfer between the two π bonds. We have shown that the nuclear motion significantly affects the electron dynamics after a few fs when the electronic states involved are close in energy. We have also demonstrated how the non-stationary electronic wave packet determines the nuclear motion, more precisely the asymmetric stretching of the two π bonds, illustrating “charge-directed reactivity”. Taking into account the nuclear wave packet width results in the dephasing of electron dynamics with a half-life of 8 fs; this eventually leads to the equal delocalisation of the hole density over the two methylene groups and thus symmetric bond lengths

    Anharmonic vs. relaxational sound damping in glasses: II. Vitreous silica

    Full text link
    The temperature dependence of the frequency dispersion in the sound velocity and damping of vitreous silica is reanalyzed. Thermally activated relaxation accounts for the sound attenuation observed above 10 K at sonic and ultrasonic frequencies. Its extrapolation to the hypersonic regime reveals that the anharmonic coupling to the thermal bath becomes important in Brillouin-scattering measurements. At 35 GHz and room temperature, the damping due to this anharmonicity is found to be nearly twice that produced by thermally activated relaxation. The analysis also reveals a sizeable velocity increase with temperature which is not related with sound dispersion. This suggests that silica experiences a gradual structural change that already starts well below room temperature.Comment: 13 pages with 8 figure
    • 

    corecore