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The position and strength of the boson peak in silica glass vary considerably with temperature T. Such

variations cannot be explained solely with changes in the Debye energy. New Brillouin-scattering

measurements are presented which allow determining the T dependence of unrelaxed acoustic velocities.

Using a velocity based on the bulk modulus, scaling exponents are found which agree with the soft-

potential model. The unrelaxed bulk modulus thus appears to be a good measure for the structural

evolution of silica with T and to set the energy scale for the soft potentials.
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The nature of collective vibrations in glasses and their
relation to structural disorder are topics of active discus-
sion and considerable interest. The reduced density of
vibrational states, gð�Þ=�2, where � ¼ !=2� is the fre-
quency, generally shows an excess over the Debye level
gDð�Þ=�2 calculated from the acoustic velocities. This
excess Ið�Þ � ðg� gDÞ=�2 is called the boson peak
(BP). It is generally agreed that the BP must bear relation
to the strong scattering of acoustic modes leading to the
plateau in the temperature (T) dependence of the thermal
conductivity, a feature universally observed in dielectric
glasses [1]. Two broad categories of processes are mainly
invoked to explain these anomalies as summarized, e.g., in
[2,3]: (1) the interaction of acoustic modes with structural
or elastic disorder, and (2) the presence of additional
vibrations and their resonant coupling to acoustic waves,
as described, e.g., by the soft-potential model (SPM) [4] or
related developments [5]. Several authors recently at-
tempted scaling BP data in terms of the Debye density of
states, e.g., [3,6–9]. They advocated that such a scaling
supports the view that BP modes are strictly acoustic. We
examine here the case of silica, a prototypical glass of high
technical interest which exhibits the strongest known BP
excess [10]. We find that scaling with the Debye velocity is
inappropriate, while scaling in terms of the bulk modulus
leads both to a satisfactory master curve and to exponents
that are compatible with the SPM. We propose that an
appropriately determined bulk modulus is a good measure
for the structural evolution of silica with T. Further, the
relation to the SPM implies that the second category of
models is here the relevant one.

Silica is a good candidate for a meaningful scaling of the
BP in function of T, since both the BP position, �BP, and
strength, IBP � Ið�BPÞ, vary significantly with T [11]. The
glass exhibits anomalous thermomechanical properties that
are typical for tetrahedral networks [12]. Among them, the
elastic moduli decrease under pressure [13] and harden

with increasing T [14]. Simulations of silica indicate a
progressive and reversible polyamorphic transformation
related to the reorientations of the –Si–O–Si– bonds form-
ing ring structures, this without bond breaking or recon-
struction [15]. The BP evolution presumably relates to that
transformation. A good measure for the degree of trans-
formation might be a suitably defined elastic modulus. One
should recall that the elastic properties of glasses at ultra-
sonic frequencies are affected by thermally activated re-
laxations (TAR) of structural defects, as known for over
half-a-century [16]. Furthermore, the anharmonic coupling
of sound with the thermal bath depresses the sound veloc-
ities with increasing T, also observed long ago [17]. A
suitably defined structure-dependent modulus should not
include these viscoelastic effects. The particular case of
silica was recently revisited on the basis of available and
new measurements of sound velocity and attenuation cov-
ering a very broad range of � and T [18]. The relaxations
can be described by double-well potentials with a distribu-
tion of barriers and asymmetries [19]. The appropriate
distribution and the effect of anharmonicity were deter-
mined in [18]. This allowed extracting an unrelaxed or bare
velocity for the longitudinal acoustic mode, vLA1 , which
was found to increase considerably with T [18]. As shown
below, the same is now observed on the transverse mode,
vTA1 . The bare bulk modulus K1 also increases strongly
with T. Changes in the corresponding ‘‘velocity,’’ vK1 /
ffiffiffiffiffiffiffi

K1
p

, could provide a measure for the progress in the
polyamorphic transformation with increasing T. In this
Letter, we show that indeed the BP of silica successfully
scales unto a single master curve with the use of vK1ðTÞ,
this with exponents that are nontrivial. Our results indicate
that the bare modulus is a good measure for the structural
evolution in function of T, and suggest that the latter
affects the strength and position of the BP.
The symbols in Fig. 1 present Brillouin-scattering re-

sults that are new for LAwaves at elevated T as well as for
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TAwaves over the entire range. The data were obtained on
a high-quality silica sample of low OH concentration
(�100 ppm) using the high-resolution tandem interfer-
ometer described in [20]. The Brillouin shifts � and
half-widths � are measured near backscattering (LA) or
at 90� (TA). Care is taken to eliminate the spectral broad-
ening due to the finite aperture, which is an important
correction at 90�. The shifts are converted to sound veloc-
ities using the known T dependence of the refractive index
[21]. Following [18], the internal friction Q�1 ¼ 2�=�
allows calculating the contributions of TAR and anharmo-
nicity to the velocities, �vTAR and �vANH, respectively
[22]. Correcting the data points in Fig. 1 for these velocity
shifts, the solid lines representing the bare velocities for
both LA and TA modes are obtained. Near and above room
T, it is the anharmonic term �vANH ¼ �vQ�1=��th
which dominates by far the velocity corrections needed
to obtain the bare values [18]. The principal source of
uncertainty is in the mean thermal relaxation time �th.
From [18,21] we estimate that the uncertainty in ln�th is
at most �0:1, which leads to the same uncertainty on
�vANH=v. The dashed lines show the velocities calculated
at the intermediate frequency of 1 THz corresponding to
the approximate position of the BP maximum, �BP. The
T dependence of the bare velocities, vLA1 and vTA1 , is

considerably stronger than observed at Brillouin-scattering
frequencies. It should be remarked that in the absence of
structural changes with T and with negligible density
changes, the bare velocities should be independent of T.
The observed dependence is thus a signature of the pro-
gressive polyamorphic transformation [15]. As already
mentioned in [18,20], the velocities v1 might be hard to
directly observe. The reason is the interaction with the BP,
as described, e.g., in [2,23]. However, at constant density
these velocities directly relate to microscopic elastic stiff-
nesses. Based on vLA1 and vTA1 one can construct other
quantities. If the interest is in the density of acoustic
modes, one considers the unrelaxed Debye velocity vD1
given by 3=ðvD1Þ3 ¼ 1=ðvLA1 Þ3 þ 2=ðvTA1 Þ3. If instead the
interest is in the average rigidity of the structure at short
distances, one can consider a ‘‘velocity’’ vK1 given by
ðvK1Þ2 ¼ ðvLA1 Þ2 � 4

3 ðvTA1 Þ2 since the bulk modulus K re-

lates to the elastic constants by K ¼ C11 � 4
3C44. The very

different T dependence of vD1 and vK1 is emphasized in
Fig. 1(c). We now explore the relation between the bare
velocities and the BP position and strength.
Figure 2 shows measurements of the excess density of

vibrational states of silica in the BP region. The data were
obtained with neutron scattering as described in [11]. For
selection rule reasons, it is most important to use here
neutron data rather than Raman scattering ones as avail-
able, e.g., in [24]. Indeed, SiO4 libration modes that are
inactive in Raman scattering are important to the BP [25],
as also confirmed in a hyper-Raman study [26]. The ordi-
nate of Fig. 2 shows the excess Ið�Þ, obtained by subtract-
ing from the various curves the Debye level, gDð�Þ=�2. For
this calculation we used a constant Debye wave vector
kD ¼ 1:576� 1010 m�1 as the variation of the atomic
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FIG. 2 (color online). The neutron scattering BP of silica at 11
different temperatures. The Debye level at 1 THz calculated
from the velocity in Fig. 1(c) is already subtracted. The inset
illustrates a scaling of the entire gð�Þ using the Debye frequency
at 1 THz, the BP frequency.
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FIG. 1 (color online). The T dependence of the sound veloc-
ities measured in silica with Brillouin scattering (points) and
renormalized to 1 THz (dashed lines) and to infinite frequency
(solid lines): (a) the LA mode; (b) the TA mode; (c) the calcu-
lated Debye velocities vD at two frequencies compared to the
bare bulk-modulus ‘‘velocity’’ vK1.
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density with T is comparatively negligible. The Debye
level is then 3=�3

D, with �D ¼ vDkD=2�, where vD is
taken from Fig. 1(c) at 1 THz. One notices that Ið�Þ does
not approach 0 at � ¼ 0. The reason lies in quasielastic
scattering (QES), a low frequency strongly anharmonic
excess that scatters in addition to the harmonic BP. The
two components can be separated based on the anharmo-
nicity, revealing that QES ‘‘decreases with increasing �
and is undetectable above 600 GHz at room T and below’’
[27]. The QES contribution also goes through a maximum
below room T, while it decreases and does not show any
additional broadening at elevated T [28,29]. In view of this,
and as it would be difficult subtracting QES from the data,
we rather leave it but do not insist that scaling applies
below 0.65 THz. The inset of Fig. 2 zooms on the BP
region, using a scaled abscissa, �=�D, and a scaled ordi-
nate, g=gD. This Debye scaling does not lead to a satisfac-
tory master curve, not so much because of a poor scaling of
the intensities, but mainly because the BP positions do not
superpose. This situation is not significantly improved if
one used vD1 in place of vD

1 THz, as will become clear below.
We now obtain from Fig. 2 the T dependence of �BP and

IBP that are shown in Fig. 3. To this effect, the successive
curves are scaled to the first one taken as reference. The
data at 51 K are indeed least affected by QES. Specifically,
the curve at T is scaled by replacing � by �=x and I by I=y.
Its difference with the 51 K curve is then minimized by a
least-square procedure over the range from �BP �
0:35 THz to �BP þ 1 THz. The BP parameters at T are
then �BPðTÞ ¼ x�BPð51 KÞ and IBPðTÞ ¼ yIBPð51 KÞ. To
obtain the values on an absolute scale, it remains to esti-
mate �BPð51 KÞ and IBPð51 KÞ. This is done by fitting the
51 K data to a log-normal, IBP exp½�ðlog�=�BPÞ2=2�2�.
Although this is somewhat ad hoc, it is of no real impor-
tance since absolute values do not affect the scaling ex-

ponents to be determined below. As observed in Fig. 3, it is
remarkable that �BP increases by as much as 24% and that
IBP decreases by 39% over this T range. Over the same
range of T, vD

1 THz only increases by 7%, while vD1 in-
creases by 11%. Here, a Debye scaling implies that �BP /
�D / vD and that IBP / ��3

D / ðvDÞ�3. While the latter
happens to be approximately verified with vD1, the former
cannot. This shows that checking the validity of the Debye
scaling can be a delicate matter to which we return in the
final discussion. At any rate this scaling does not work in
silica. This is not so surprising. Indeed, there is now ample
evidence that the BP of silica does not derive its strength
from acoustic modes, as already known from neutron
scattering [25] and hyper-Raman [26] results.
The data points of Fig. 3 can be adjusted to a bare

velocity v1 with

�BPðTÞ ¼ a½v1ðTÞ��; IBPðTÞ ¼ b½v1ðTÞ��: (1)

We remark that if this works for one particular type of v1,
it will work for all. Indeed, over the restricted ranges of
interest here, we observe the approximate relations vK1 �
ðvLA1 Þ1:43 � ðvD1Þ2:13 � ðvTA1 Þ2:27. We note that vK1 in-
creases by 25% over the range of T, rather similar to the
increase in �BP. It seems thus appropriate to first try vK1 in
(1). This gives the solid lines traced in Fig. 3 with the
exponents shown there. The scatter in the experimental
points does not result from the scaling procedure described
in the previous paragraph, but rather from the neutron data
themselves. The uncertainty in vK1 related to �th leads to
variations in both � and � that are about half the error bars
given in Fig. 3. The exponents are nearly � ¼ 1 and � ¼
�4=3, well within these error bars. Using the latter values,
the entire data scales as shown in Fig. 4. Except for the
region below �0:75 THz which is affected by QES, the
scaling is obviously very satisfactory. It is now of interest
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to consider the meaning of these exponents within the
SPM.

The progressive polyamorphic transformation of silica
occurs without any change in the network connections
[15]. Hence, the number of defects producing quasilocal
vibrations should not change. It is the environment of the
soft harmonic oscillators which is modified. The latter are
characterized by an energy E0 ¼ Mv2 [4], where M is the
mean atomic mass. The unspecified velocity v entering E0

is certainly an unrelaxed v1. Assuming that only E0

changes with T, and using Eqs. (1.5) of [4], one obtains

�L / v�2=3
1 ; W / v2=3

1 : (2)

Here, �L is the small parameter that scales the kinetic
energy of the soft-potential Hamiltonian, and W is the
crossover energy between vibrational and tunneling states.
The BP intensity is fully determined by the strength of its
low frequency (� 	 �BP) onset. This is seen by comparing
Eqs. (5.12) and (5.18) of [5]. One can thus use a well-
known expression for the onset, which is that Ið�Þ /
�2=W5 [30], up to � ¼ �BP to derive the scaling. This gives

�2
BP=IBP / W5: (3)

Introducing (1) and (2) in (3), one obtains

2�� � ¼ 10=3: (4)

This precisely agrees with the values � ¼ 1 and � ¼
�4=3 found above using vK1 for scaling. This suggests
that the bulk modulus gives in the present case a suffi-
ciently appropriate measure for the average interactions of
the soft potentials with their environment. E0 being con-
trolled by an inverse compressibility, these interactions
seem to be mostly hydrodynamiclike on the average.

Compared to silica in function of T, in the silicates that
were investigated for scaling, the relative range of �BP is
smaller. It is about 6% for the three curves that scale in [7],
less in [6], and nil in [3], while it is 24% presently. This
smallness makes checking for the validity of a Debye
scaling all the more demanding. It would require a strin-
gent analysis both of the peak positions and of the intensity
which is in excess over the Debye level. In particular in [3],
there is no change in �D and thus no possibility to check
the scaling law. By comparison, there exists one report of a
failure of the Debye scaling tested on a polymer under
pressure [8]. A similar conclusion was anticipated in [31].
On the other hand there is one report of a successful Debye
scaling of Raman scattering data on a reactive mixture
during polymerization [9]. However, this is a complicated
physicochemical situation so that the significance of the
result is momentarily not understood. Summarizing, it
would be hard concluding from available scaling evidence
that the origin of boson peaks in glasses is necessarily
acoustic.

Our results show that for silica in function of T a Debye
scaling of the large excursions in �BPðTÞ and IBPðTÞ is not
possible. A scaling can be performed in terms of unrelaxed
velocities v1. The exponents that are found using a bare
velocity based on the bulk modulus vK1 are remarkably
compatible with the existence of quasilocal vibrations
described by the soft-potential model. It thus seems that
the unrelaxed bulk modulus provides a good measure for
the T-dependent polyamorphic transformation of silica and
that it plays a key role in setting the scale for the soft
potentials.
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125 (1955).
[17] T.N. Claytor and R. J. Sladek, Phys. Rev. B 18, 5842

(1978).
[18] R. Vacher, E. Courtens, and M. Foret, Phys. Rev. B 72,

214205 (2005).
[19] K. S. Gilroy and W.A. Phillips, Philos. Mag. 43, 735

(1981).
[20] E. Rat et al., Phys. Rev. B 72, 214204 (2005).
[21] S. Ayrinhac, Doctoral thesis, Univ. of Montpellier, 2008

(unpublished).
[22] With the new � values of the present measurements, the

constant C scaling the TAR contribution in [18] now
equals 1:9� 10�3 [23], the same for LA and TA modes.

[23] A. Devos et al., Phys. Rev. B 77, 100201(R) (2008).
[24] A. Fontana et al., Europhys. Lett. 47, 56 (1999).
[25] U. Buchenau et al., Phys. Rev. B 34, 5665 (1986).
[26] B. Hehlen et al., Phys. Rev. Lett. 84, 5355 (2000).
[27] U. Buchenau et al., Phys. Rev. Lett. 60, 1318 (1988).
[28] A. P. Sokolov et al., Europhys. Lett. 38, 49 (1997).
[29] A. Fontana et al., J. Non-Cryst. Solids 351, 1928 (2005).
[30] M.A. Ramos et al., Phys. Status Solidi (a) 135, 477

(1993).
[31] L. Hong et al., Phys. Rev. B 78, 134201 (2008).

PRL 104, 067402 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

12 FEBRUARY 2010

067402-4


