1,491 research outputs found

    One-dimensional infinite component vector spin glass with long-range interactions

    Full text link
    We investigate zero and finite temperature properties of the one-dimensional spin-glass model for vector spins in the limit of an infinite number m of spin components where the interactions decay with a power, \sigma, of the distance. A diluted version of this model is also studied, but found to deviate significantly from the fully connected model. At zero temperature, defect energies are determined from the difference in ground-state energies between systems with periodic and antiperiodic boundary conditions to determine the dependence of the defect-energy exponent \theta on \sigma. A good fit to this dependence is \theta =3/4-\sigma. This implies that the upper critical value of \sigma is 3/4, corresponding to the lower critical dimension in the d-dimensional short-range version of the model. For finite temperatures the large m saddle-point equations are solved self-consistently which gives access to the correlation function, the order parameter and the spin-glass susceptibility. Special attention is paid to the different forms of finite-size scaling effects below and above the lower critical value, \sigma =5/8, which corresponds to the upper critical dimension 8 of the hypercubic short-range model.Comment: 27 pages, 27 figures, 4 table

    On photoexcitation of baryon antidecuplet

    Full text link
    We show that the photoexcitation of the baryon antidecuplet, suggested by the soliton classification of low-lying baryons, is strongly suppressed on the proton target. The process occurs mostly on the neutron target. This qualitative prediction can be useful in identifying the non-exotic members of the antidecuplet in the known baryon spectrum. We also analyze the interrelation between photocouplings of various baryon multiplets in the soliton picture and in the nonrelativistic quark model.Comment: 9 pages, one Latex figur

    Chiral Quark Model

    Get PDF
    In this talk I review studies of hadron properties in bosonized chiral quark models for the quark flavor dynamics. Mesons are constructed from Bethe--Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two--fold Pauli--Villars regularization scheme not only fully regularizes the effective action but also leads the scaling laws for structure functions. For the nucleon structure functions the present approach serves to determine the regularization prescription for structure functions whose leading moments are not given by matrix elements of local operators. Some numerical results are presented for the spin structure functions.Comment: Talk presented at the workshop QCD 2002, IIT Kanpur, Nov. 2002, 10 pages, proceedings style files include

    Nucleon Structure Functions from a Chiral Soliton in the Infinite Momentum Frame

    Get PDF
    We study the frame dependence of nucleon structure functions obtained within a chiral soliton model for the nucleon. Employing light cone coordinates and introducing collective coordinates together with their conjugate momenta, translational invariance of the solitonic quark fields (which describe the nucleon as a localized object) is restored. This formulation allows us to perform a Lorentz boost to the infinite momentum frame of the nucleon. The major result is that the Lorentz contraction associated with this boost causes the leading twist contribution to the structure functions to properly vanish when the Bjorken variable xx exceeds unity. Furthermore we demonstrate that for structure functions calculated in the valence quark approximation to the Nambu--Jona--Lasinio chiral soliton model the Lorentz contraction also has significant effects on the structure functions for moderate values of the Bjorken variable xx.Comment: 16 pages, 1 figure, revised version to be published in Int. J. Mod. Phys.

    Flavored exotic multibaryons and hypernuclei in topological soliton models

    Full text link
    The energies of baryon states with positive strangeness, or anti-charm (-beauty) are estimated in chiral soliton approach, in the "rigid oscillator" version of the bound state soliton model proposed by Klebanov and Westerberg. Positive strangeness states can appear as relatively narrow nuclear levels (Theta-hypernuclei), the states with heavy anti-flavors can be bound with respect to strong interactions in the original Skyrme variant of the model (SK4 variant). The binding energies of anti-flavored states are estimated also in the variant of the model with 6-th order term in chiral derivatives in the lagrangian as solitons stabilizer (SK6 variant). The latter variant is less attractive, and nuclear states with anti-charm or anti-beauty can be unstable relative to strong interactions. The chances to get bound hypernuclei with heavy antiflavors are greater within "nuclear variant" of the model with rescaled model parameter (Skyrme constant e or e' decreased by ~30%) which is expected to be valid for baryon numbers greater than B ~10. The rational map approximation is used to describe multiskyrmions with baryon number up to ~30 and to calculate the quantities necessary for their quantization (moments of inertia, sigma-term, etc.).Comment: 24 pages, 7 table

    Instability of the hedgehog shape for the octet baryon in the chiral quark soliton model

    Full text link
    In this paper the stability of the hedgehog shape of the chiral soliton is studied for the octet baryon with the SU(3) chiral quark soliton model. The strangeness degrees of freedom are treated by a simplified bound-state approach, which omits the locality of the kaon wave function. The mean field approximation for the flavor rotation is applied to the model. The classical soliton changes shape according to the strangeness. The baryon appears as a rotational band of the combined system of the deformed soliton and the kaon.Comment: 24 pages, LaTeX, 8 eps file

    Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements

    Get PDF
    Number concentrations of total and non-volatile aerosol particles with size diameters >0.01 μm as well as particle size distributions (0.4–23 μm diameter) were measured in situ in the Arctic lower stratosphere (10–20.5 km altitude). The measurements were obtained during the campaigns European Polar Stratospheric Cloud and Lee Wave Experiment (EUPLEX) and Envisat-Arctic-Validation (EAV). The campaigns were based in Kiruna, Sweden, and took place from January to March 2003. Measurements were conducted onboard the Russian high-altitude research aircraft Geophysica using the low-pressure Condensation Nucleus Counter COPAS (COndensation PArticle Counter System) and a modified FSSP 300 (Forward Scattering Spectrometer Probe). Around 18–20 km altitude typical total particle number concentrations nt range at 10–20 cm−3 (ambient conditions). Correlations with the trace gases nitrous oxide (N2O) and trichlorofluoromethane (CFC-11) are discussed. Inside the polar vortex the total number of particles >0.01 μm increases with potential temperature while N2O is decreasing which indicates a source of particles in the above polar stratosphere or mesosphere. A separate channel of the COPAS instrument measures the fraction of aerosol particles non-volatile at 250°C. Inside the polar vortex a much higher fraction of particles contained non-volatile residues than outside the vortex (~67% inside vortex, ~24% outside vortex). This is most likely due to a strongly increased fraction of meteoric material in the particles which is transported downward from the mesosphere inside the polar vortex. The high fraction of non-volatile residual particles gives therefore experimental evidence for downward transport of mesospheric air inside the polar vortex. It is also shown that the fraction of non-volatile residual particles serves directly as a suitable experimental vortex tracer. Nanometer-sized meteoric smoke particles may also serve as nuclei for the condensation of gaseous sulfuric acid and water in the polar vortex and these additional particles may be responsible for the increase in the observed particle concentration at low N2O. The number concentrations of particles >0.4 μm measured with the FSSP decrease markedly inside the polar vortex with increasing potential temperature, also a consequence of subsidence of air from higher altitudes inside the vortex. Another focus of the analysis was put on the particle measurements in the lowermost stratosphere. For the total particle density relatively high number concentrations of several hundred particles per cm3 at altitudes below ~14 km were observed in several flights. To investigate the origin of these high number concentrations we conducted air mass trajectory calculations and compared the particle measurements with other trace gas observations. The high number concentrations of total particles in the lowermost stratosphere are probably caused by transport of originally tropospheric air from lower latitudes and are potentially influenced by recent particle nucleation

    Casimir Effects in Renormalizable Quantum Field Theories

    Get PDF
    We review the framework we and our collaborators have developed for the study of one-loop quantum corrections to extended field configurations in renormalizable quantum field theories. We work in the continuum, transforming the standard Casimir sum over modes into a sum over bound states and an integral over scattering states weighted by the density of states. We express the density of states in terms of phase shifts, allowing us to extract divergences by identifying Born approximations to the phase shifts with low order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are canceled against standard counterterms. Thus regulated, the Casimir sum is highly convergent and amenable to numerical computation. Our methods have numerous applications to the theory of solitons, membranes, and quantum field theories in strong external fields or subject to boundary conditions.Comment: 27 pp., 11 EPS figures, LaTeX using ijmpa1.sty; email correspondence to R.L. Jaffe ; based on talks presented by the authors at the 5th workshop `QFTEX', Leipzig, September 200

    Zero-temperature phase of the XY spin glass in two dimensions: Genetic embedded matching heuristic

    Full text link
    For many real spin-glass materials, the Edwards-Anderson model with continuous-symmetry spins is more realistic than the rather better understood Ising variant. In principle, the nature of an occurring spin-glass phase in such systems might be inferred from an analysis of the zero-temperature properties. Unfortunately, with few exceptions, the problem of finding ground-state configurations is a non-polynomial problem computationally, such that efficient approximation algorithms are called for. Here, we employ the recently developed genetic embedded matching (GEM) heuristic to investigate the nature of the zero-temperature phase of the bimodal XY spin glass in two dimensions. We analyze bulk properties such as the asymptotic ground-state energy and the phase diagram of disorder strength vs. disorder concentration. For the case of a symmetric distribution of ferromagnetic and antiferromagnetic bonds, we find that the ground state of the model is unique up to a global O(2) rotation of the spins. In particular, there are no extensive degeneracies in this model. The main focus of this work is on an investigation of the excitation spectrum as probed by changing the boundary conditions. Using appropriate finite-size scaling techniques, we consistently determine the stiffness of spin and chiral domain walls and the corresponding fractal dimensions. Most noteworthy, we find that the spin and chiral channels are characterized by two distinct stiffness exponents and, consequently, the system displays spin-chirality decoupling at large length scales. Results for the overlap distribution do not support the possibility of a multitude of thermodynamic pure states.Comment: 18 pages, RevTex 4, moderately revised version as publishe

    Do we expect light flavor sea-quark asymmetry also for the spin-dependent distribution functions of the nucleon?

    Get PDF
    After taking account of the scale dependence by means of the standard DGLAP evolution equation, the theoretical predictions of the chiral quark soliton model for the unpolarized and longitudinally polarized structure functions of the nucleon are compared with the recent high energy data. The theory is shown to explain all the qualitative features of the experiments, including the NMC data for F2p(x)F2n(x)F_2^p (x) - F_2^n (x), F2n(x)/F2p(x)F_2^n (x) / F_2^p (x), the Hermes and NuSea data for dˉ(x)uˉ(x)\bar{d}(x) - \bar{u}(x), the EMC and SMC data for g1p(x)g_1^p(x), g1n(x)g_1^n(x) and g1d(x)g_1^d(x). Among others, flavor asymmetry of the longitudinally polarized sea-quark distributions is a remarkable prediction of this model, i.e., it predicts that Δdˉ(x)Δuˉ(x)=Cxα[dˉ(x)uˉ(x)]\Delta \bar{d}(x) - \Delta \bar{u}(x) = C x^{\alpha} [ \bar{d}(x) - \bar{u}(x)] with a sizable negative coefficient C2.0C \simeq -2.0 (and α0.12\alpha \simeq 0.12) in qualitative consistency with the recent semi-phenomenological analysis by Morii and Yamanishi.Comment: 14pages, including 5 eps_figures with epsbox.sty, late
    corecore