89 research outputs found

    Localized states due to expulsion of resonant impurity levels from the continuum in bilayer graphene

    Full text link
    Anderson impurity problem is considered for a graphene bilayer subject to a gap-opening bias. In-gap localized states are produced even when the impurity level overlaps with the continuum of band electrons. The effect depends strongly on the polarity of the applied bias as long as hybridization with the impurity occurs within a single layer. For an impurity level inside the conduction band a positive bias creates the new localized in-gap state. A negative bias does not produce the same result and leads to a simple broadening of the impurity level. The implications for transport are discussed including a possibility of gate-controlled Kondo effect.Comment: 5 pages, 2 figure

    The photon absorption edge in superconductors and gapped 1D systems

    Full text link
    Opening of a gap in the low-energy excitations spectrum affects the power-law singularity in the photon absorption spectrum A(Ω)A(\Omega). In the normal state, the singularity, A(Ω)∝[D/(Ω−Ωth)]αA(\Omega)\propto [D/(\Omega-\Omega_{\rm th})]^\alpha, is characterized by an interaction-dependent exponent α\alpha. On the contrary, in the supeconducting state the divergence, A(Ω)∝(D/Δ)α(Ω−Ω~th)−1/2A(\Omega)\propto (D/\Delta)^\alpha(\Omega-\tilde{\Omega}_{\rm th})^{-1/2}, is interaction-independent, while threshold is shifted, Ω~th=Ωth+Δ\tilde{\Omega}_{\rm th}=\Omega_{\rm th}+\Delta; the ``normal-metal'' form of A(Ω)A(\Omega) resumes at (Ω−Ω~th)≳Δexp⁥(1/α)(\Omega-\tilde{\Omega}_{\rm th})\gtrsim \Delta\exp(1/\alpha). If the core hole is magnetic, it creates in-gap states; these states transform drastically the absorption edge. In addition, processes of scattering off the magnetic core hole involving spin-flip give rise to inelastic absorption with one or several {\it real} excited pairs in the final state, yielding a structure of peaks in A(Ω)A(\Omega) at multiples of 2Δ2\Delta above the threshold frequency. The above conclusions apply to a broad class of systems, e.g., Mott insulators, where a gap opens at the Fermi level due to the interactions.Comment: 6 pages, 5 figures; published versio

    A simple microscopic description of quantum Hall transition without Landau levels

    Full text link
    By restricting the motion of high-mobility 2D electron gas to a network of channels with smooth confinement, we were able to trace, both classically and quantum-mechanically, the interplay of backscattering, and of the bending action of a weak magnetic field. Backscattering limits the mobility, while bending initiates quantization of the Hall conductivity. We demonstrate that, in restricted geometry, electron motion reduces to two Chalker-Coddington networks, with opposite directions of propagation along the links, which are weakly coupled by disorder. Interplay of backscattering and bending results in the quantum Hall transition in a non-quantizing magnetic field, which decreases with increasing mobility. This is in accord with scenario of floating up delocalized states.Comment: Published versio

    Perturbation theory in radial quantization approach and the expectation values of exponential fields in sine-Gordon model

    Get PDF
    A perturbation theory for Massive Thirring Model (MTM) in radial quantization approach is developed. Investigation of the twisted sector in this theory allows us to calculate the vacuum expectation values of exponential fields expiaphi(0) exp iaphi (0) of the sine-Gordon theory in first order over Massive Thirring Models coupling constant. It appears that the apparent difficulty in radial quantization of massive theories, namely the explicite ''time'' dependence of the Hamiltonian, may be successfully overcome. The result we have obtained agrees with the exact formula conjectured by Lukyanov and Zamolodchikov and coincides with the analogous calculations recently carried out in dual angular quantization approach by one of the authors.Comment: 16 pages, no figures, LaTe

    Fluctuation-enhanced gas sensing

    Get PDF
    AbstractThe sensitivity of gas sensors was earlier measured by classical method-comparison the resistance of sensors in gas media and air. Here we reported results of the study of low-frequency noise characteristics of sensors. We compare data for different Figaro TGS sensors as well as our sol-gel H2 tin dioxide and porous silicon sensors. The study was performed in dry air and in a mix of dry air with carbon monoxide, hydrogen and alcohol of different concentrations. Higher sensitivity of spectral dependence of noise (SDN) to gas concentration in comparison with classical method of the measurements of gas sensing by a change in the Ohmic resistance part of current-voltage characteristics of samples allows using such SND powerful method for determination of gas concentration in the air or environment

    The system of EAS time analysis

    Get PDF
    The extensive air showers' (EAS) front shape, angle of incidence, disk thickness, particle distribution along the shower, on the delayed and EAS front advancing particles were determined. The suggested system of the EAS time analysis allows determination of the whole EAS longitudinal structure at the observation points. The information from the detectors is continuously recorded in the memory with the memory cell switching in 5 ns, this enables fixation of the moment of pulse input from the detector with an accuracy to + or - 2.5 ns. Along with the fast memory, a slow memory with the cell switching in 1 micron s is introduced in the system, this permits observation of relatively large time intervals with respect to the trigger pulse with an appropriately lower accuracy

    Nanoscale Nonlinear Spectroscopy with Electron Beams

    Get PDF
    We theoretically demonstrate the ability of electron beams to probe the nonlinear photonic response with nanometer spatial resolution, well beyond the capabilities of existing optical techniques. Although the interaction of electron beams with photonic modes is generally weak, the use of optical pumping produces stimulated electron–light interactions that can exceed order-unity probabilities in photon-induded near field electron microscopy (PINEM). Here, we demonstrate that PINEM can locally and quantitatively probe the nonlinear optical response. Specifically, we predict a dependence of PINEM electron spectra on the sample nonlinearity that can reveal the second-harmonic (SH) response of optical materials with nanometer resolution, observed through asymmetries between electron energy losses and gains. We illustrate this concept by showing that PINEM spectra are sensitive to the SH near field of centrosymmetric structures and by finding substantial spectral asymmetries in geometries for which the linear interaction is reduced

    Disorder-induced tail states in a gapped bilayer graphene

    Full text link
    The instanton approach to the in-gap fluctuation states is applied to the spectrum of biased bilayer graphene. It is shown that the density of states falls off with energy measured from the band-edge as Îœ(Ï”)∝exp⁥(âˆ’âˆŁÏ”/Ï”t∣3/2)\nu(\epsilon)\propto \exp(-|\epsilon/\epsilon_t|^{3/2}), where the characteristic tail energy, Ï”t\epsilon_t, scales with the concentration of impurities, nin_i, as ni2/3n_i^{2/3}. While the bare energy spectrum is characterized by two energies: the bias-induced gap, VV, and interlayer tunneling, t⊄t_{\perp}, the tail, Ï”t\epsilon_t, contains a {\it single} combination V1/3t⊄2/3V^{1/3}t_{\perp}^{2/3}. We show that the above expression for Îœ(Ï”)\nu(\epsilon) in the tail actually applies all the way down to the mid-gap.Comment: 7 pages, 4 figure
    • 

    corecore