352 research outputs found

    Elastic domains in antiferromagnets

    Get PDF
    We consider periodic domain structures which appear due to the magnetoelastic interaction if the antiferromagnetic crystal is attached to an elastic substrate. The peculiar behavior of such structures in an external magnetic field is discussed. In particular, we find the magnetic field dependence of the equilibrium period and the concentrations of different domains

    Influence of Strain on the Kinetics of Phase Transitions in Solids

    Get PDF
    We consider a sharp interface kinetic model of phase transitions accompanied by elastic strain, together with its phase-field realization. Quantitative results for the steady-state growth of a new phase in a strip geometry are obtained and different pattern formation processes in this system are investigated

    From nonlinear to linearized elasticity via Γ-convergence: the case of multiwell energies satisfying weak coercivity conditions

    Get PDF
    Linearized elasticity models are derived, via Γ-convergence, from suitably rescaled non- linear energies when the corresponding energy densities have a multiwell structure and satisfy a weak coercivity condition, in the sense that the typical quadratic bound from below is replaced by a weaker p bound, 1 < p < 2, away from the wells. This study is motivated by, and our results are applied to, energies arising in the modeling of nematic elastomers

    Tskhra-Tskaro complex intended for the investigations of EAS spatial characteristics near axis

    Get PDF
    Tskhra-Tskaro EAS complex located at the height of 2500 m above sea level is intended for a correlated investigation of three main components of the extended atmospheric showers (EAS) - hadron, muon and electro-proton ones - near the shower axis. This complex is aimed at the investigation of proton and primary cosmic radiation nucleus interactions with the nuclei of air atoms within the energy range 10 to the 14th power to 10 to the 16th power eV. Research equipment design and installation are discussed

    Microstructure from ferroelastic transitions using strain pseudospin clock models in two and three dimensions: a local mean-field analysis

    Get PDF
    We show how microstructure can arise in first-order ferroelastic structural transitions, in two and three spatial dimensions, through a local meanfield approximation of their pseudospin hamiltonians, that include anisotropic elastic interactions. Such transitions have symmetry-selected physical strains as their NOPN_{OP}-component order parameters, with Landau free energies that have a single zero-strain 'austenite' minimum at high temperatures, and spontaneous-strain 'martensite' minima of NVN_V structural variants at low temperatures. In a reduced description, the strains at Landau minima induce temperature-dependent, clock-like ZNV+1\mathbb{Z}_{N_V +1} hamiltonians, with NOPN_{OP}-component strain-pseudospin vectors S{\vec S} pointing to NV+1N_V + 1 discrete values (including zero). We study elastic texturing in five such first-order structural transitions through a local meanfield approximation of their pseudospin hamiltonians, that include the powerlaw interactions. As a prototype, we consider the two-variant square/rectangle transition, with a one-component, pseudospin taking NV+1=3N_V +1 =3 values of S=0,±1S= 0, \pm 1, as in a generalized Blume-Capel model. We then consider transitions with two-component (NOP=2N_{OP} = 2) pseudospins: the equilateral to centred-rectangle (NV=3N_V =3); the square to oblique polygon (NV=4N_V =4); the triangle to oblique (NV=6N_V =6) transitions; and finally the 3D cubic to tetragonal transition (NV=3 N_V =3). The local meanfield solutions in 2D and 3D yield oriented domain-walls patterns as from continuous-variable strain dynamics, showing the discrete-variable models capture the essential ferroelastic texturings. Other related hamiltonians illustrate that structural-transitions in materials science can be the source of interesting spin models in statistical mechanics.Comment: 15 pages, 9 figure

    Study of Phase Stability in NiPt Systems

    Full text link
    We have studied the problem of phase stability in NiPt alloy system. We have used the augmented space recursion based on the TB-LMTO as the method for studying the electronic structure of the alloys. In particular, we have used the relativistic generalization of our earlier technique. We note that, in order to predict the proper ground state structures and energetics, in addition to relativistic effects, we have to take into account charge transfer effects with precision.Comment: 22 pages, 7 figures. Accepted for publication in JPC

    Coarse Grained Density Functional Theories for Metallic Alloys: Generalized Coherent Potential Approximations and Charge Excess Functional Theory

    Full text link
    The class of the Generalized Coherent Potential Approximations (GCPA) to the Density Functional Theory (DFT) is introduced within the Multiple Scattering Theory formalism for dealing with, ordered or disordered, metallic alloys. All GCPA theories are based on a common ansatz for the kinetic part of the Hohenberg-Kohn functional and each theory of the class is specified by an external model concerning the potential reconstruction. The GCPA density functional consists of marginally coupled local contributions, does not depend on the details of the charge density and can be exactly rewritten as a function of the appropriate charge multipole moments associated with each lattice site. A general procedure based on the integration of the 'qV' laws is described that allows for the explicit construction the same function. The coarse grained nature of the GCPA density functional implies great computational advantages and is connected with the O(N) scalability of GCPA algorithms. Moreover, it is shown that a convenient truncated series expansion of the GCPA functional leads to the Charge Excess Functional (CEF) theory [E. Bruno, L. Zingales and Y. Wang, Phys. Rev. Lett. {\bf 91}, 166401 (2003)] which here is offered in a generalized version that includes multipolar interactions. CEF and the GCPA numerical results are compared with status of art LAPW full-potential density functional calculations for 62, bcc- and fcc-based, ordered CuZn alloys, in all the range of concentrations. These extensive tests show that the discrepancies between GCPA and CEF are always within the numerical accuracy of the calculations, both for the site charges and the total energies. Furthermore, GCPA and CEF very carefully reproduce the LAPW site charges and the total energy trends.Comment: 19 pages, 11 figure

    Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall

    Full text link
    Surprising asymmetry in the local electromechanical response across a single antiparallel ferroelectric domain wall is reported. Piezoelectric force microscopy is used to investigate both the in-plane and out-of- plane electromechanical signals around domain walls in congruent and near-stoichiometric lithium niobate. The observed asymmetry is shown to have a strong correlation to crystal stoichiometry, suggesting defect-domain wall interactions. A defect-dipole model is proposed. Finite element method is used to simulate the electromechanical processes at the wall and reconstruct the images. For the near-stoichiometric composition, good agreement is found in both form and magnitude. Some discrepancy remains between the experimental and modeling widths of the imaged effects across a wall. This is analyzed from the perspective of possible electrostatic contributions to the imaging process, as well as local changes in the material properties in the vicinity of the wall

    Order parameter configurations in the Lifshitz-type incommensurate ferroelectric thin films

    Full text link
    The Dzialoshinskii model of periodic and helicoidal structures has been analyzed without neglecting of the amplitude function oscillations. The amplitude function oscillations are shown to be important for understanding of the nature of the phase function. Analytic consideration is carried out in the limit of small anisotropy (neglecting the cosine term in the Hamiltonian). Surprisingly, the phase jumps survive even in the limit of the vanishing anisotropy
    corecore