131 research outputs found

    An inverse source problem for the heat equation and the enclosure method

    Full text link
    An inverse source problem for the heat equation is considered. Extraction formulae for information about the time and location when and where the unknown source of the equation firstly appeared are given from a single lateral boundary measurement. New roles of the plane progressive wave solutions or their complex versions for the backward heat equation are given.Comment: 23page

    Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing

    Get PDF
    We study controllability issues for the 2D Euler and Navier- Stokes (NS) systems under periodic boundary conditions. These systems describe motion of homogeneous ideal or viscous incompressible fluid on a two-dimensional torus T^2. We assume the system to be controlled by a degenerate forcing applied to fixed number of modes. In our previous work [3, 5, 4] we studied global controllability by means of degenerate forcing for Navier-Stokes (NS) systems with nonvanishing viscosity (\nu > 0). Methods of dfferential geometric/Lie algebraic control theory have been used for that study. In [3] criteria for global controllability of nite-dimensional Galerkin approximations of 2D and 3D NS systems have been established. It is almost immediate to see that these criteria are also valid for the Galerkin approximations of the Euler systems. In [5, 4] we established a much more intricate suf- cient criteria for global controllability in finite-dimensional observed component and for L2-approximate controllability for 2D NS system. The justication of these criteria was based on a Lyapunov-Schmidt reduction to a finite-dimensional system. Possibility of such a reduction rested upon the dissipativity of NS system, and hence the previous approach can not be adapted for Euler system. In the present contribution we improve and extend the controllability results in several aspects: 1) we obtain a stronger sufficient condition for controllability of 2D NS system in an observed component and for L2- approximate controllability; 2) we prove that these criteria are valid for the case of ideal incompressible uid (\nu = 0); 3) we study solid controllability in projection on any finite-dimensional subspace and establish a sufficient criterion for such controllability

    Fullerene Black: Relationship between Catalytic Activity in n-alkanes Dehydrocyclization and Reactivity in Oxidation, Bromination and Hydrogenolysis

    Get PDF
    The reactivity of fullerene black in oxidation (by air oxygen or ions MnO4–or Cr2O7 2– in solution), bromination (by Br2 or (C4H9)4NBr3) and hydrogenolysis (without hydrogenation catalyst) are studied. The dehydrocyclization of n-alkanes over fullerene black is realized via the monofunctional mechanism, i.e. the dehydrogenation and cyclization stages proceed on the same catalytic center. The addition of alumina to the catalyst transforms dehydrocyclization mechanism to bifunctional one, when fullerene black acts as dehydrogenation agent. Reactivity studies and ESR spectroscopy data for initial and annealed fullerene black show the presence in fullerene black structure of both non-conjugated multiple and dangling bonds. Nonconjugated bonds determine catalytic activity and reactivity of fullerene black. They are localized in amorphous part of fullerene black. Technological aspects of fullerene black as alkanes dehydrocyclization catalyst are discussed

    Global Carleman inequalities for parabolic systems and applications to controllability

    Get PDF
    This paper has been conceived as an overview on the controllability properties of some relevant (linear and nonlinear) parabolic systems. Specifically, we deal with the null controllability and the exact controllability to the trajectories. We try to explain the role played by the observability inequalities in this context and the need of global Carleman estimates. We also recall the main ideas used to overcome the difficulties motivated by nonlinearities. First, we considered the classical heat equation with Dirichlet conditions and distributed controls. Then we analyze recent extensions to other linear and semilinear parabolic systems and/or boundary controls. Finally, we review the controllability properties for the Stokes and Navier–Stokes equations that are known to date. In this context, we have paid special attention to obtaining the necessary Carleman estimates. Some open questions are mentioned throughout the paper. We hope that this unified presentation will be useful for those researchers interested in the field.Ministerio de Educación y Cienci

    A Priori Error Estimate of Stochastic Galerkin Method for Optimal Control Problem Governed by Random Parabolic PDE with Constrained Control

    Get PDF
    A stochastic Galerkin approximation scheme is proposed for an optimal control problem governed by a parabolic PDE with random perturbation in its coefficients. The objective functional is to minimize the expectation of a cost functional, and the deterministic control is of the obstacle constrained type. We obtain the necessary and sufficient optimality conditions and establish a scheme to approximate the optimality system through the discretization with respect to both the spatial space and the probability space by Galerkin method and with respect to time by the backward Euler scheme. A priori error estimates are derived for the state, the co-state and the control variables. Numerical examples are presented to illustrate our theoretical results

    Approximate Controllability for Linear Stochastic Differential Equations in Infinite Dimensions

    Full text link
    The objective of the paper is to investigate the approximate controllability property of a linear stochastic control system with values in a separable real Hilbert space. In a first step we prove the existence and uniqueness for the solution of the dual linear backward stochastic differential equation. This equation has the particularity that in addition to an unbounded operator acting on the Y-component of the solution there is still another one acting on the Z-component. With the help of this dual equation we then deduce the duality between approximate controllability and observability. Finally, under the assumption that the unbounded operator acting on the state process of the forward equation is an infinitesimal generator of an exponentially stable semigroup, we show that the generalized Hautus test provides a necessary condition for the approximate controllability. The paper generalizes former results by Buckdahn, Quincampoix and Tessitore (2006) and Goreac (2007) from the finite dimensional to the infinite dimensional case.Comment: 31 pages, submitted to AM

    Quantitative estimates of unique continuation for parabolic equations, determination of unknown time-varying boundaries and optimal stability estimates

    Full text link
    In this paper we will review the main results concerning the issue of stability for the determination unknown boundary portion of a thermic conducting body from Cauchy data for parabolic equations. We give detailed and selfcontained proofs. We prove that such problems are severely ill-posed in the sense that under a priori regularity assumptions on the unknown boundaries, up to any finite order of differentiability, the continuous dependence of unknown boundary from the measured data is, at best, of logarithmic type

    Metal hydride hydrogen storage and compression systems for energy storage technologies

    Get PDF
    Along with a brief overview of literature data on energy storage technologies utilising hydrogen and metal hydrides, this article presents results of the related R&D activities carried out by the authors. The focus is put on proper selection of metal hydride materials on the basis of AB5- and AB2-type intermetallic compounds for hydrogen storage and compression applications, based on the analysis of PCT properties of the materials in systems with H2 gas. The article also presents features of integrated energy storage systems utilising metal hydride hydrogen storage and compression, as well as their metal hydride based components developed at IPCP and HySA Systems
    corecore