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Abstract. This paper has been conceived as an overview on the controllability properties of some
relevant (linear and nonlinear) parabolic systems. Specifically, we deal with the null controllability
and the exact controllability to the trajectories. We try to explain the role played by the observability
inequalities in this context and the need of global Carleman estimates. We also recall the main ideas
used to overcome the difficulties motivated by nonlinearities. First, we considered the classical heat
equation with Dirichlet conditions and distributed controls. Then we analyze recent extensions to
other linear and semilinear parabolic systems and/or boundary controls. Finally, we review the
controllability properties for the Stokes and Navier—Stokes equations that are known to date. In this
context, we have paid special attention to obtaining the necessary Carleman estimates. Some open
questions are mentioned throughout the paper. We hope that this unified presentation will be useful
for those researchers interested in the field.
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Introduction. The goal of this paper is to provide a panorama of an important
subfield of control theory: the null controllability analysis of parabolic equations and
systems.

The main contributions to this area are due to O. Yu. Imanuvilov, who popularized
the use of global Carleman estimates in the context of null controllability. Many
arguments from [36], [30], [39], and [37] will be reproduced here. Another relevant con-
tributor has been E. Zuazua, who was able to deduce global controllability results for
some nonlinear systems for the first time in [56].

The controllability of partial differential equations has been the object of inten-
sive research during the last few decades. In 1978, Russell [53] made a survey of the
most relevant results that were available in the literature at that time. In that paper,
the author described a number of different tools that were developed to address con-
trollability problems, often inspired and related to other subjects concerning partial
differential equations: multipliers, moment problems, nonharmonic Fourier series, etc.
More recently, J.-L. Lions introduced the so-called Hilbert uniqueness method (for in-
stance, see [44], [45], [46]). That was the starting point of a fruitful period on the
subject.

It would be impossible to present here all the relevant results that have been
proved in this area. We will thus reduce our scope drastically, considering only null
controllability problems for parabolic equations and systems.

In order to get an idea, let us consider the simplest case of the linear heat equation
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with Dirichlet boundary conditions and distributed controls:

yy—Ay=vlp in Q=Qx(0,7),
(0.1) y=0 on X =00Qx(0,7),
y(0) = ¢° in Q.

Here, @ ¢ RY is a bounded domain of class C2, O C Qisa nonempty open subset,
1o is the characteristic function of O, and T is a given positive time. We assume that
the initial state y° is given in L?(2) and try to find a control v € L?(O x (0,T)) such
that the associated state y = y(x,t) possesses a desired behavior at time ¢t = T'.

Roughly speaking, systems of parabolic type like (0.1) are characterized by non-
reversibility, the dissipativity of the solutions (i.e., the fact that energy is lost along
the trajectories), and the regularizing effect.

In accordance with this last property, it is not possible to lead the solutions of
(0.1) exactly to every final state in a Sobolev space like L?(2) or H™(f2), unless the
control is exerted brutally, i.e., unless we are in the trivial and uninteresting situation
0=Q.

On the contrary, it may be interesting to investigate whether it is possible to
drive the solutions to (0.1) (acting on a small set O CC ) exactly to a state on a
trajectory. For instance, it is completely meaningful to search for controls v such that
the associated states y satisfy

(0.2) y(T)=0 in Q.

If such controls exist, we say that (0.1) is null controllable at time T'.

Observe that the null controllability of a parabolic system is a very useful property
from the viewpoint of applications. Indeed, it permits us to reach in a finite amount
of time a state that is “natural” for the system. All the work has to be done for
t € [0,T]. Afterwards, no additional effort is needed to get a satisfactory situation.

It is also easy to see that, for a linear system of the kind above, null controllability
is equivalent to ezact controllability to the trajectories, i.e., to the following property:
for any y" € L?(Q) and any function 7 satisfying

{yt—Ayzo in Q,
y=20 on X
and

7 € C°([0, T]; L*(Q)),
there exist controls v such that

y(T) =F(T) in Q.

It will be explained below that the null controllability of a linear parabolic system
is, roughly speaking, equivalent to the observability of the associated adjoint states.
More precisely, for each ¢° € L?(2), let us consider the so-called adjoint system

—¥Yt — A(p =0 in Qa
(0.3) p=0 on X,
o(T) = ¢° in .
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Then (0.1) is null controllable with controls in L?(O x (0, T)) if and only if there exists
C > 0 such that

(0.4) 19(0) 22y < C // P drdt Ve € L2(Q).
Ox(0,T)

At present, the most powerful tools to prove inequalities like (0.4) for general
parabolic systems are global Carleman estimates. They have the form

(0.5) // 0% || dadt < C// p? |p|? dx dt,
Qx(0,T) Ox(0,T)

where p = p(z,t) is continuous and strictly positive for ¢ € (0,7). The previous
considerations motivate the need for establishing such estimates.

It is also natural to ask if null controllability and/or exact controllability to the
trajectories hold in the framework of semilinear or even genuinely nonlinear parabolic
systems. For instance, we can be interested in controls and states satisfying

ye— Ay + fly) =vlo in Q,
(0.6) y=0 on X,
y(0) = y° in Q

and (0.2), where the function f : R +— R is given and, for instance, we assume that
feCYR) and f(0) = 0.

For systems of this kind, a classical approach relies on the use of fixed point
arguments. The idea is to find a fixed point of the mapping z +— y, where y is,
together with some v, a solution to the linearized system

yt—Aer@y:vlo in @,
(0.7) y=20 on X,
y(0) =" in ©

satisfying (0.2). The existence of v is again equivalent to an observability inequality
which is implied by appropriate Carleman estimates similar to (0.5).

The fixed point approach can be applied whenever, among other things, the way
the constants arising in Carleman estimates depend on the coefficients of the linearized
systems is known in detail. Therefore, a careful analysis of (0.5) is needed.

The theoretical results we present below can be applied in many contexts. For
instance, they can serve as tools for

e controlling the temperature of a medium eventually influenced by transport
and/or chemical effects;

e controlling the velocity field of a real fluid (like those modeled by the Navier—
Stokes equations), etc.

In the following sections, we will explain how these ideas can be applied to several
parabolic equations and systems. A similar (but different) overview on this topic is
[6], where the author is also concerned with the stabilization of parabolic systems.

An important aspect of the controllability of time-dependent systems that will not
be treated in this paper is the analysis and obtainment of numerical approximations.
Of course, the most interesting question concerning the null controllability of (0.1)
and (0.6) is how to construct a control with the desirable properties.
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Several ideas that reproduce the theoretical arguments at a finite-dimensional
level were given, for instance, in [34]. Unfortunately, the proposed algorithms seem
to be still too expensive. We simply point out here that the controllability analysis
we recall in section 2, based on the solution of a linear fourth order problem, could
provide some promising ideas.

There are many other important subjects related to the controllability of parabolic
equations that will not be visited here. Let us mention some of them:

e The analysis of the existence of insensitizing controls in the sense of [47] or,
more generally, the null controllability of cascade systems. This has been
the objective of considerable work in recent years (see, for instance, [12], [9],
and [26]).

e The controllability of parabolic systems with memory. This includes inter-
esting families of linear viscoelastic fluids. Some partial results in this field
are given in [7] and [14].

e The control of coupled systems of parabolic-hyperbolic type, like a combina-
tion of heat and wave equations, the system of thermoelasticity, etc. Some of
these problems have been treated in [57], [42], and [43].

e The control of fluid-solid interaction systems. This seems to be unexplored
at present. For very simple models, some results are given in [13].

e The control of nondeterministic systems. Some advances were made in the
context of linear problems. See, for instance, [8]. In this field, the main open
question turns out to be the obtainment of controllability results for nonlinear
systems, due to the lack of compactness.

The plan of this paper is the following. In section 1, we consider the classical
heat equation and some variants. Essentially, we deal there with heat equations with
strong solutions. We recall the proof of a basic Carleman estimate and present some
applications to semilinear systems.

Section 2 is devoted to the null controllability analysis of other more complicated
parabolic equations involving weak and/or very weak solutions. It will be shown
that the proof of the related Carleman inequalities is much more involved and needs
some extra work. We will also indicate how this can be used to deduce the exact
controllability to the trajectories of more general semilinear systems.

Finally, section 3 is concerned with systems of the Stokes kind. Here, the main
difficulties are caused by the pressure. We will recall a recent argument leading to an
appropriate but not completely satisfactory Carleman inequality. We will also explain
how this leads to the null controllability of Stokes-like systems and to the local exact
controllability to the trajectories of the Navier—Stokes equations.

1. Null controllability of the linear heat equation and applications.

1.1. Null controllability and observability. Let us consider again the sim-
plest case of the linear heat equation with Dirichlet boundary conditions and dis-
tributed control with support in a small set:

ye —Ay=vlp in Q,
(1.1) y=0 on X,
y(0) = ¢° in Q.

We assume that O CC ) is a nonempty (small) open subset and T is a given

positive time. In what follows, n(x) will stand for the outward unit normal vector at
the point # € Q. We assume that the initial state y° is given in L?(£2), and we try to
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find a control v € L2(O x (0,T)) such that the associated state y = y(x,t) possesses
a desired behavior at time ¢t = 7.

Recall that under these assumptions, system (1.1) has a unique weak solution y
satisfying

y € L*(0,T; Hy () N C°([0, T]; L*(9))

that depends continuously on 3% and v.

Our interest is to provide an answer to the following questions.

Question 1: Null controllability. For every y° € L*(), can a control v € L?(O x
(0,7)) be found such that y(T) =0 in Q7

This question will be answered affirmatively in this section. To this end, we will
introduce, for each ¢° € L?(2), the adjoint system

—¥Yt — A‘P =0 in Q7
(1.2) =0 on X,
o(T) = ¢° in 9,

and we will try to answer the following auxiliary question.
Question 2: Observability inequality. Can we find a constant C' > 0 such that, for
each % € L?(1), the associated solution of (1.2) satisfies

(1.3) l9(0)[1Z2() < C// |<p|2dxdt?

An affirmative answer to Question 2 implies an affirmative answer to Question 1.
This is what is proved in the following result.

THEOREM 1.1. The observability inequality (1.3) implies the null controllability
of (1.1).

Proof. We divide the proof into two steps. First, we build a sequence of controls
ve € L?(O x (0,T)) with e > 0 which provide the approzimate controllability of (1.1)
(see (1.7)). Second, we pass to the limit when ¢ tends to zero and we conclude.

Step 1. Let y° € L?(Q2) and ¢ > 0 be given. Let us introduce the functional J.,
with

1
0 @)= [ el el i + (2011 e
x (0,

for every ¥ € L2(Q). Here, ¢ is the solution of (1.2) associated to the initial condition
Y. Using (1.3), it is not difficult to check that J. is strictly convex, continuous, and
coercive in L?(€2), so it possesses a unique minimum ¢? € L?()), whose associated
solution is denoted by ¢.. Let us now introduce the control v. = .10, and let us
denote by y. the solution of (1.1) associated to v..

Let y; be the final state of the solution to (1.1) with vanishing control. Let us
remark that the unique interesting case to be studied turns out to be when ||y1 || 2 (o) >
g, since this is equivalent to ¢? # 0. See [19] for more details. Under this assumption,
we can differentiate the functional J. at gog and obtain a necessary condition for J.
to reach a minimum at 902, say,

0
(1.5) // @swdwdtH(% <p°> + (2(0),4°) 2@y =0
0x(0,T) |2 HLE(Q L2(Q)

for every ¢° € L?(Q).
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Using this and (1.3) for ¢° = ¢2, we obtain ||ve||z2(0x(0,r)) < VO [¥°]lr2(),
where C' is the observability constant of (1.3).
Since systems (1.1) and (1.2) are in duality, we have

(1.6) / / e pdrdt = (5(T), ) 2y — (4% 0(0)) L2y,
Ox(0,T)

which, combined with (1.5), yields

(L.7) 19 (T)llz2(0) <.

Step 2. Since the sequence {v.} is bounded in L?(O x (0,T)), it possesses a
(weakly) convergent subsequence to certain v € L2?(O x (0,T)). Using classical
parabolic estimates we deduce that, at least for a subsequence,

(1.8) y. —y weakly in L?(0,T; H3(Q)) N H(0,T; H*(Q)),

where y is the solution of (1.1) with control v. In particular, this gives weak conver-
gence for {y.(t)} (t € [0,T]) in L*(Q) so we have y(T) = 0.
Remark 1. At this point, some comments must be made:
1. We have proved that (1.3) implies null controllability with a control that
satisfies

(1.9) vl 20x 0,1 < VC 90|12

where C' is the observability constant.
Conversely, if we have null controllability with controls v € L?(O x (0, T))
that satisfy

(1.10) vl 20 x(0,1)) < \FCHZ/OHLZ(Q)

for some constant C' > 0, then it can be checked that we have (1.3) with the
same constant C'.

2. It is possible to present a similar argument in a general frame. Let us consider
three Hilbert spaces U, H, E and two linear continuous operators L € L(U; E)
and M € L(H; E). Then we have

(L.11) 1Ml < CIL* Ol Ve° € B
for some positive constant C' if and only if R(M) C R(L) and, moreover,
(1.12) vy® € H, Jv € U such that Lv = My°, ||lv|lz < C||y°||z.

Properties of this kind have been established and analyzed for the first time
in the framework of control theory in [52]. They have been successfully used
in many different contexts in recent years.

3. Because of linearity, the null controllability of (1.1) is equivalent to the exact
controllability to (uncontrolled) trajectories. In other words, (1.1) is null
controllable if and only if, for every 7° € L%(Q), we can find a control v €
L?(O x (0,T)) such that y(T) = y(T) in , where y is the solution of (1.1)
associated to v, and 7 satisfies

yt - A? =0 in Q7
(1.13) y=0 on X,
7(0) =7° in Q.
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4. In general, for any y* € L?(Q), it is not reasonable to look for a control
v € L?(O x (0,T)) such that y(T) = y' in Q (recall that O cC Q). Indeed,
due to the regularizing effect, every solution to (1.1) is space-analytic in
Q\ O at time T, which is not necessarily the case for y*. Thus, the ezact
controllability problem is out of order for the heat equation.

In what follows, for the reasons stated above, we will focus on the proof of (1.3).
This will rely on other (previous) inequalities for the solutions to (1.2), known as global
Carleman inequalities. Let us mention that a general global Carleman inequality
adopts the form

(1.14) // 0 |pl? dr dt < C’// p? || dx dt,
2x(0,T) Ox(0,T)

where p = p(z,t) is a continuous and strictly positive weight function. For a function
p satisfying p > 0 in Q x (0,T'), we will be able to deduce (1.14) and then estimates
like

(1.15) // || do dt < C’// lo|? da dt.
Qx(T/4,3T/4) 0x(0,T)

This, together with the dissipation properties of the solutions of (1.2), will lead to
(1.3). More details are given below.

Remark 2. To our knowledge, the first (boundary) controllability results for
the heat equation were obtained by Egorov in the early sixties; see [17]. Later, an
important general principle was established by Russell in [52]: if Ty is sufficiently large
and the wave system

yu — Ay =vle in Qx(0,Tp),
(1.16) y=0 on 09 x (0,Tp),
y(0)=4°, w(0)=y" in Q

is ezactly controllable at time Ty, then (1.1) is null controllable at time T for all T' > 0.

This principle has been revisited by several authors. In particular, an “abstract”
version is given in [4].

Using the method of moments, the exact controllability of (1.16) can be established
for large Ty when, for instance, O is a neighborhood of 92. Thus, one has null
controllability for (1.1) in this case.

Remark 3. In the particular case of the classical heat equation (1.1), there is
another way to prove (1.3), based on the spectral decomposition of the solutions.
This approach was introduced by Lebeau and Robbiano [41] and led to the null
controllability of the heat equation with controls supported by general subdomains
O cc Q for the first time.

1.2. A global Carleman inequality for the linear heat equation and its
consequences.

LEMMA 1.2. Let w CC Q be a nonempty open subset. Then there exists n° €
C?(Q) such that n° >0 in Q, n° =0 on 99, and |Vn°| > 0 in Q\ w.

A proof of this lemma can be found in [30]. A much easier proof can be developed
when ( is star shaped with respect to a point 2° € w.
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Let w be a nonempty open set satisfying w CC O and let us set

e22mln°lloe _ A0 [l +n° (@)

az,t) =

t(T—t ’
(1.17) o (0 )
eAMmln”lleo+n"(2))

for (x,t) € Q, where n° is the function furnished by Lemma 1.2 for this w and m > 1.
Weight functions of this kind were first introduced by Imanuvilov. See [30] for a
systematic use of them.

Now we arrive at the main result of this section.

LEMMA 1.3. There exist three constants Ay = C(Q,0) > 1,8 = C(Q,0)
(T + T?), and C1(,0) such that, for any X > X\; and any s > sy, the following
inequality holds:

st // e 25 (|| + |Agl?) da dt + 5 N2 // e 25 ¢ |Vq|? dr dt
Q Q

(1.18) + s34 // e 2503 g dr dt < Cy <// e gy + Aq|* dx dt
Q Q

+ 53)\4//0 o e 25 g3 |q|2dxdt)
x (0,

for all g € C?(Q) with g =10 on X.

In what follows, C (€2, O) or simply C' will denote a generic constant depending
only on Q and O.

Before giving the proof of Lemma 1.3, we will deduce the observability inequality
(1.3) (and, accordingly, the null controllability of (1.1)) from this result. This can be
made in three steps.

Step 1. From the density of the smooth functions in the space where the solutions
of (1.2) with ¢° € L?*(Q) live, we first observe that the Carleman inequality above is
verified by all of them. Thus, fixing A = A1, we get

(1.19)
// e 25T — )73 P dr dt < C’// e 25T — )73 |p|* da dt
Q 0x(0,T)

for all s > s1.
Step 2. Using the inequalities

(1.20) e 2103 — )73 > e*20<“w<9><1+1/T>% in Qx (T/4,3T/4)
and

(1.21) e 210 =3(T — )73 < e*Cm’O)(lﬂ/T)% in Qx(0,7),

we get

(1.22) // lp|?dzdt < C(Q,0,T) // lp|? d dt,
Qx(T/4,3T/4) 0x(0,T)
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with a constant C'(92, O, T) of the form e (2O)(1+1/T)
Step 3. From the equation verified by ¢, we readily obtain

9 [3T/4
1.23 O g—/ O(t)||32(g dt-
(1.23) le(O)Iz2(0) < 7 - le®Z2 ()

This, together with (1.22), gives the observability inequality (1.3).

In view of Theorem 1.1, we have the following.

THEOREM 1.4. The system (1.1) is null controllable with controls v € L*(O x
(0,T)) that verify

(1.24) vl 2o 0.1y < CllY° 220

where the constant C' is of the form e©(O)A+1/T)

Let us now give the proof of the Carleman estimate (1.18). The proof we present
here is based on the ideas in [30]. We will try to keep an explicit dependence of all the
constants with respect to the parameters s and A and the final time 7. This follows
the spirit of [27] and will be crucial for the analysis of similar nonlinear problems.

Proof of Lemma 1.3. For simplicity, we will divide the proof into three steps.

Step 1. Change of variables and plan of what follows. In this step, we set the
differential equation satisfied by a new function v, which will be ¢ up to a weight
function.

Thus, let us introduce the new functions ¢ = e
have denoted f = ¢; + Aq. Then we easily obtain that

g and g = e ** f, where we

(1.25) My + Myt = gs,»,

where

(1.26) My = 25 X2 [ViP 2 €4 — 25 A E V- Vb + 4,
Myt = 8> N |Vi° > €4 + Av + 5., 9,

and

(1.27) Gox = g+ SAARLED — s N2 | V02 €4,

To simplify the notation, we will denote by (M;9); (1 <i <2, 1 < j < 3) the jth
term in the expression of M;1 given in (1.26).

Observe that, at first sight, it seems “natural” to put (Mi4)); on the right-hand
side of (1.25). However, we have decided to keep it on the left, because it will serve
to produce a positive term on [V4|? (see the scalar product ((Myt)1, (Math)2)r2(g)
below).

With the previous notation, we have from (1.25)

3
(1.28) HleH%Q(Q) + ||M2¢H2L2(Q) +2 Z (M), (M2v) ) 12(Q) = l1gsx

ij=1

‘2
L2 (Q)"

In the following steps, we will see that the definition we have made of o makes
2(M13p, Mat))12(q) positive up to several terms that can be controlled whenever we
make an appropriate choice of the parameters s and .

More precisely, in the second step we will make the computations of the double
products 2(Mi1), Mavp)2(gy. This will give an inequality with two global terms of
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|2 and |V1)|? on the left-hand side, while two local terms of |1|? and |V|? will
appear on the right-hand side (see (1.57)). In the third step we will add two terms
(involving 1y and Aw) to the left of (1.57). This will help us to eliminate the local
term containing V1 that appears on the right-hand side and will provide a Carleman
inequality for the function v (see (1.63)). Finally, we will turn back to the original
function ¢ and deduce the inequality (1.18).

Step 2. First estimates. In this step, we will develop the nine terms appearing in
(My1p, Matp)2(qy. For this, we will integrate by parts several times with respect to
the space and time variables, so derivatives of the weight functions will be involved.
Actually, we will use the estimates

diar = —0;6 = X0 € < CNE,
(1.29) 22l lloe _ pA(ml|n°lloe +0°)

Olt:—(T—2t> t2(T7t)2 SCT&'Q’

where C' is a positive constant depending only on Q and O.
The last inequality follows from the fact that

(1.30) e22mlln’llee < Al llootn?) i .

First, we have

(1.31) (Myh)1, (Mah)1) 12y = —28° A* // IVn°[* € [¢]? da dt = A.
Q
Then
(M0)2, (M) 1g) = ~25° X [ [ Vi€ (Vi - V) wdo
Q
=353\ // |Vt €3 || da dt
Q
(1.32) +33x’>// An® VP2 €3 || da dt
Q
N
4253 \3 Z// 2in° dijn° om° €3 |Y|? dx dt
ij=177Q
= By + By + Bs.

We clearly have that A+ B is a positive term. As a consequence of the properties
of n° (see Lemma 1.2), we have

A+ By = s\ //Q V[ € [¢l* dudt > Cs* X //Q & [l da dt

(1.33) 0
—Cs3\? // &> drdt =A—~ B
wx (0,T)

for some C' = C(Q,0). The first of these last two integrals (A) will stay on the

left-hand side, while the second one (ﬁ) will go to the right-hand side.
The terms By and Bsz are absorbed by A by simply taking A > C, since n° €
C?(Q).
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We also have

(M19)3, (Maw)1) p2(q) = 8> A? / IV ? €y 1 da dt
(1.34) ?
— 2 //Qw“fgt [ da dt,

which, by virtue of (1.29), is bounded by
(1.35) OS2 NT // &3 |2 da dt.
Q

This term can also be absorbed if we take A > 1 and s > C(Q,0)T
Consequently, we have

(Myap, (Map)1) 2(q) = ((M1ap)1 + (M) 4 (M14)3, (M21))1) 12(Q)

4 3 2
(1.36) >Cs* A //g ¥[? da dt

- Cs® )\4// €3 p|? dx dt
wx (0,T)

for any A > C(Q,0) and s > C(Q,0)T
On the other hand, we have

(My)1, (Math)s) 12y = ~25 X2 / [ 1w Peapydsa
:25)\2/ VY% € |Vo|? dx dt

(137) 44522 Z // D Dy € Dy it

1,7=1
+2s\3 // V02 € (Vn® - Vop) o d dt
Q
=C1+Cy+ Cs.
We will keep C; on the left-hand side. For C; and C3, we have

(1.38) Ca §Cs)\4// §\¢|2dzdt+05/ E|V|? de dt
Q Q

and

(1.39) Oy < C's2 x*// % |w|2da:dt+0/\2/ Vol da dt.
Q Q

Therefore, taking s > C'T?, we find that

C1+Cy+C5 > 2s )\2/ (V12 ¢ |Vap|? dr dt
Q

—052A4//Qg2Wdzdt—c//Q(ngrA?)|v¢2da:dt.

(1.40)
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We also have

(M), (Ma))2)12(q) = —23/\// £(Vn® - Vo) Ay da dt

o e

(1.41) +2sA Z // 9;n° £ Oy 959 da dt

i,j=1

do dt

+2s )\2/ EIvn° - Vo|? da dt
Q

+3A// EVn® - V|Vy|? dx dt
Q

=Dy + Dy + Dy + Dy,

Let us remark that Ds is a positive term. Furthermore,
(1.42) D, < CSA/ ¢|Vy|? du dt.
Q

After some additional computations we also see that

D4_s)\// £vi° V|w\2dzdt—sA// 58770

—s)\2// \Vn0|2§\v¢|2dxdt—s)\/ An® ¢ | V| dx dt
Q Q

= Dy1 + Dys + Dys.

%

do dt

(1.43)

By virtue of the properties satisfied by 1°, we notice that D; + Dy; > 0 and that Dys
can be bounded in the same way as Ds.
Consequently,

Dy + Dy + D3+ Dy > —5A2/ |V & |Vap|? d dt
Q
—C’s/\// £V dx dt.
Q
Additionally, we find that

(1.45) (My)s, (Mab)2)1200) = [ [ wsvara=o

(1.44)

From (1.40)—(1.45), we deduce that
(M), (M21)2) 2@y = (Myp)1 + (Mytp)2 + (My1))3, (May))2) L2 (q)
ZS)\2/ |Vn°|? €| V| dx dt
Q
(1.46) —Cs* /\4/ Y| du dt
Q
-C NE+ A2 V|2 da dt
[ resxivuian

for A\>1and s > CT?.
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Hence, we have the following for A > C(Q,0) and s > C(Q,0) T
(M, (Mah)2) 2y = C s A2 // €|V dr dt
Q
(1.47) - C s\ // €2 || da dt
Q

—CS)\Q// €|V|? du dt.
wx(0,T)

Let us now consider the scalar product

(M), (M) 1) = ~2° X [ [ V1P v fui? do

(1.48) N

<Cs*NT // €3 p|* dx dt.
Q

Obviously, this is absorbed by A if we take A >land s >CT.
Furthermore,

(My3)2, (Mat))3) 12(q) = —28° A //Q o & (Vn® - V) o da dt
=22 [[ a9 elof dode
(1.49) @
+32)\// Vag - Vi € [|? do dt
Q

+82/\//Q oy An° & )2 da dt.

From (1.29), one can easily check that the previous three terms can be bounded
(if A >1) by

(1.50) Cs?\2T // &3 || da dt.
Q
Thus, we have
(1.51) (M19)a, (M21))3)2(q) > —C'5° AQT//Q €3 ¢)? da dt.
Finally, we have

(Mr)s, (Math)3)r2(@) = s //Q o Y da dt

1
:—fs// g Y|P dedt < CsT? // & [Y|? dx dt,
2 JJq Q

(1.53) ay <CE1+T*) <CT?*E8.

(1.52)

since
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From (1.48)—(1.52), we deduce for A > C(Q,0) and s > C(2,O) T that
(M3, (M21))3) 2@y = (M1¥)1 + (M13)2 + (M13))3, (M2v))3) £2(@)

> —C s3\? // €3 p|* dx dt.
Q
Taking into account (1.36), (1.47), and (1.54), we obtain

(M, M) 12 = C / /Q (s A2E [V + 55 M €3 []?) du dt

(1.54)

(1.55)
-C N EIVYPE+ 8 A |y)?) dad
J[ o (R EITUR 4 XE ) e

for any A > C(Q,0) and s > C(Q,O)(T + T?). Using (1.28), this gives

1My 0 + 1 Mat]2(0) + / /Q (s A2E |V + 55 A 3 y[?) du dit

< C<QS,>\||2L2(Q) + // © T)(s )\2£|V1/)|2 +s2A e |¢|2) dxdt>
wx (0,

<C // e*2sa|f|2dxdt+52x4// 2 |p|* d dt
Q Q
+ s\? // E|Vp2drdt + 3 )\4// & |1/)|2dxdt>.
wx(0,T) wx(0,T)

Thus, we also have

V12 ) + (M]3 0 + //Q<3A2£w|2 L SN |YP) dade

(1.57) <C (// e 25| fI2 do dt + s \? // E|Vy|? dz dt
Q wx(0,T)

+ 53\ // I |w|2d:cdt>
wx(0,T)

for A > C(Q,0) and s > C(Q,0)(T + T?).

Step 3. Indirect estimates and conclusion. The final step will be to add integrals of
|Aw)|? and |1/¢]? to the left-hand side of (1.57). This can be made using the expressions
of M; (i = 1,2). Indeed, from (1.26) we have

st //Q §1|1/Jt|2d:cdt<C<s)\2 //ngﬁ‘dxdt

(1.56)

(1.58)
Y //Q € [|? dar it + ||M1w|%2(Q)>
and
! Ay dedt < O s* A Sl ded
. s //Q£ |AGP da dt < (s //stl vt

+8T2 //Q 53 ‘1M2d$dt+ ||M2w||%2(Q)>
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for s > C'T?. Accordingly, we deduce from (1.57) that

S P 1807 +5 02 [TUP + 50 (0P dode
Q

(1.60) <c (// e fPava s [ evuPdsa
Q wx(0,T)

+ 531 // € |* dr dt
wx(0,T)

for any A > C(Q,0) and s > C(Q,0)(T +T?).
We are now ready to eliminate the second integral on the right-hand side. To this
end, let us introduce a function 6 = 6(x), with

(1.61) hcC*>0), =1 in w, 0<6<1,

and let us make some computations. We have

522 // IV drdt < 5 X2 // 01V drdi
wx(0,T) 0x(0,T)

=52 // 0€ Ao da dt
Ox(0,T)

— 2 .
SA //OX(QT)Q“(VQ V) dx dt

(1.62) , .
— s\ //OX(QT)eg(vn V) ) da dt

<es ! // €AY dr dt
Ox(0,T)

+C<53A4 // E 2 drdt + s\ // §¢2dzdt>
Ox(0,T) Ox(0,T)

for a small enough constant e = £(2,O) > 0 and where we have used the fact that
A > 1. Hence, we can eliminate the integral of |V1|? on the right-hand side of (1.60),
paying the price of having |1|? in O x (0,T). From (1.60) and this remark, we deduce
that

// (s E ([ + [ A[R) + s X2 € [V 4 53 XA €2 [ ) da
Q

<C (// e 25 |f|2d:cdt+s3)\4// I3 w|2dxdt>
Q Ox(0,T)

for A > C(Q,0) and s > C(Q,0)(T + T?).

We finally turn back to our original function, which was given by ¢ = e**. For

(1.63)
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the moment, we have

st //Q e P dadt 4 571 //Q £ AY|? da dt

+5\2 E|Vp2drdt + 53 X1 e 263 g du dt
(1.64)
’ Q Q
<C (// e 25 | fI2 do dt + 53 \* // 6_25“§3q|2dﬂcdt> .
Q Ox(0,T)
Using that
(1.65) Vg =e**(Vip — s AV £),
we find

s A2 // e 25 ¢ V|2 da dt < C's N\ // £ V|2 da dt
Q Q

(1.66)
+C s\ // e 250 &3 |q|? dx dt.
Q

Consequently, we can add the previous integral of |Vg|? to the left-hand side of (1.64):

st //Q E P drdt 4+ 571 //Q Y| AY? da dt

(1.67) + 52 //Q ¢|Vq|? dx dt 4+ s3 \* //Q e 250 &3 g da dt

<C // e 25| fI2 du dt + s \* // e 250 g3 g* dr dt ) .
Q Ox(0,T)

For Aq, we use the identity

(1.68)
Ath = e Y (Ag+ s XA Eq+ s X2 VP2 Eq+2s2EVR° - Vg + s X2 |[V°|2 €2 q)

st // 6250‘§1|Aq2dxdt<0<sl // €A dr dt
Q Q

(1.69) +5\2 // e 259 ¢ g do dt 4 s A // e 25 ¢ |q)? da dt
Q Q

+3A2//Q e 2 E|Vq|? drdt + 53\ //Q 6_23a53|q|2d33dt>.

Finally, for g; we get

st // e Zsa gl |qt|2da:dt§0<s_1 // E |2 d dt
Q Q
+sT7? // R |(]2dacdt>7
Q

and obtain

(1.70)
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where we have used the identity ¢ = e**(¢x + sarvp). Thus, taking A > 1 and
s > C(Q,0)(T + T?), we are able to introduce all the terms involving |Ag|? and
|g:|> on the left-hand side of (1.64). This gives (1.18) and concludes the proof of
Lemma 1.3.

Remark 4. It would be very interesting to know whether the powers of s and
A arising in (1.18) are optimal. In other words, would it be possible to deduce an
inequality like (1.18) with higher powers of s and A accompanying the terms on the
left-hand side? A positive answer to this would lead to the controllability of nonlinear
parabolic systems more general than those considered in subsections 1.3.2 and 2.2.1.

1.3. Applications and generalizations. There are many other similar sys-
tems for which null controllability properties can be analyzed as before. Let us men-
tion some of them.

1.3.1. General parabolic linear systems. We will now try to apply the Carle-
man inequality obtained in the previous subsection to systems where the heat equation
has a zero order term and a first order term in the divergence form. More precisely,
we would like to prove the null controllability of the system

—Ay+ V- (yB(x,t) 4+ a(z,t) y=vlp in Q,
(1.71) y=0 on X,
y(0) = y° in Q,

where y° € L2(2), a € L>®(Q), and B € L>(Q)
In this case, the associated adjoint system is the following:

—p1 = Ap = B(z,t) - Vo ta(z,t)p=0 in Q,
(1.72) p=0 on X,
o(T) = ¢° in Q.

A result similar to Theorem 1.1 holds for systems (1.71) and (1.72). Consequently,
what we have to do is prove an observability inequality for the solutions to (1.72).

In this situation, Lemma 1.3 provides a first estimate of the kind (1.18) (with ¢
replaced by ¢), with two additional terms on the right-hand side, namely,

(1.73) c// e 2 apl*drdt and C// e 25| B - Vo|* dz dt.

But these can be absorbed by the left-hand side if we take s large enough. Indeed, it
suffices to take

(1.74) s> C(2,0)T?([lal 2 + | BI1%)

C’(// e 25 a | dr dt + // e 25| B - V|? dxdt)
Q Q
1 1
< —s3 )\ // e 253 | drdt + —s \? // e 25 ¢ |V|* dr dt.
2 Q 2 Q

Arguing as we did when we proved the observability inequality for the solutions to
(1.2), we easily find

(1.76) // lp|?dzdt < C(Q,0,T,a,B) // lo|? da dt,
Qx(T/4,3T/4) Ox(0,T)

to have

(1.75)
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with a constant

(1.77) C(9,0,T,a,B) = exp{C(1 + 1/T + |ja|%* + || B||%.)}-
On the other hand, the dissipativity of ¢ yields

(1.78) le(O)1Z2 () < exp{CT([lalloe + [BIZ)} le(DZ2 o)

for all t € (T/4,3T/4). Combining (1.76) and (1.78), we see that

all2/3 allo 2
(1.79)  llp(0)]Z2(q) < eCUH/THIal"+T el +(1+T>HBHW)// |o]? da dt
Ox(0,T)

for all the solutions of (1.72) associated to final data ©° € L?(2). As mentioned above
(see Theorem 1.1), this implies the null controllability of (1.71).
THEOREM 1.5. System (1.71) is null controllable, with controls v satisfying

(1.80) vl 20 (0,m)) < C(Q,0,T,a, B)||y°| 20,
where
(1.81) C(©Q,0.T, a, B) = eCOOAT T+l +T el + (4D BIL).

Remark 5. In a recent paper, Seidman [54] looked at the qualitative asymptotic
behavior of the constants found in estimates of the kind (1.80) with respect to relevant
parameters. In particular, the blow-up of C'(2, 0, T, a, B) as T — 0 has been analyzed
in some particular cases.

The next step will be to establish the null controllability for a general linear heat
equation system with first order terms and coefficients in L>°(Q), i.e., an equation of
the form

(182) yt_Ay+B(xvt) vy+a(x7t)y:vloa

with @ € L*(Q) and B € L*(Q)Y. A different Carleman inequality is now re-
quired since, in the corresponding adjoint equation, there is the term —V - (¢ B(x, 1)),
which belongs to L?(0,T; H~*(£2)). This will be treated in section 2 using arguments
from [39].

1.3.2. Extension to some semilinear systems. We will now consider possible
extensions of the null controllability results above to nonlinear problems of the form

ye — Ay + f(y) =vlp in Q,
(1.83) y=20 on X,
y(0) = y° in Q,

where
(1.84) f € CYR) (for instance), f(0)=0, and |f(s)|<C(1+]s|).
The classical strategy used in [36] and [30] relies on the introduction of a mapping

(1.85) 2z € L*(Q) — y. € L*(Q),
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where y, is, together with v,, a solution of

(yz)t - Ayz + g(z>yz =v,lp in Q;

(1.86) Yy, =0 on X,
y.(0) = y° in Q

such that

(1.87) y.(T)=0

and (1.80) holds for v, with a = ¢g(z) and B = 0. Here, g is given by

fls) .
(1.88) gs) =4 5 if 570,
) if s=0.

Using the previous results and arguing as in [36], it can be seen that this mapping
can be correctly defined. It can also be proved that it is continuous and compact.
Furthermore, in view of (1.84), the estimate (1.80) written for v,, and the classical
estimates for y,, it maps the whole space L?(Q) into a ball. Hence, from Schauder’s
theorem, we deduce that this mapping possesses a fixed point and, consequently, the
following holds.

THEOREM 1.6. Under conditions (1.84) on f, system (1.83) is null controllable,
with controls v satisfying

(189)  [[vllz2ox(.r) < exp{C(Q,0) (1 +1/T + [|gl3° + Tllglloc) Iy ll 220

where g is given by (1.88).

This fixed point approach for the solution of controllability problems for nonlin-
ear systems was introduced in [56] in the context of the controllability of the wave
equation. Later, it was successfully applied to the semilinear heat equation in [36],
[19], [30], [20], and [28].

The next case corresponds to a superlinear f, i.e., to a function not satisfying
the last condition in (1.84). In this context, it is much more complicated to estimate
the norms of v, and y,, since g is not necessarily uniformly bounded. However,
something can still be made in some particular cases. More precisely, the following
result is proved in [28].

THEOREM 1.7. Assume that

f €CYR) (for instance), f(0)=0, and

(1.90) £ (s)]

— > —0 as|s| = +o0.
s log®?(1+s|)

Then (1.83) is null controllable with controls v € L= (O x (0,T)).
Remark 6. It is also proved in [28] that, in general, when
(1.91) |£(s)] ~ Is|log” (1 + |s])

for some 5 > 2, (1.83) is not null controllable. However, it is unknown whether or
not the system (1.83) is null controllable when this is satisfied with 2 < 8 < 2.
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1.3.3. Another boundary conditions. Let us consider the following system,
where the heat equation is completed with linear Robin (or Fourier) boundary condi-
tions:

y—Ay=vlp  in Q

(1.92) +a(z,t)y=0 on %,

9y
on
y(0) =y" in Q,

where a € L>®°(X) and y° € L?(£2). Recall that under these assumptions there exists
a unique solution y to (1.92), with

y € L*(0,T: H()) N C°([0, T]; L*(2)).

Arguing as above, it is readily seen that the null controllability of (1.92) is implied
by the observability of the adjoint system

—por —Ap =0 in Q,
(1.93) g—: +a(z,t)p=0 on X,
o(T) = ¢° in Q.

An observability inequality for the solutions to (1.93) is proved in [30], under the
additional assumption a; € L (X). As a consequence, one also has the null controlla-
bility of (1.92) whenever a fulfills this hypothesis. For some partial results concerning
a nonlinear version of (1.92), see [15].

An improvement of these results has been obtained in the more recent work [21].
See section 2 for further details.

1.3.4. Another controllability problems. Another interesting problem is the
null controllability of the heat equation with boundary controls, which means the null
controllability of the system

Yt — Ay =0 in Qa
(1.94) y =vl, on X,
y(0)=y° in Q
when v is a (small) part of 9. In this case, the adjoint system is again (1.2) but the

required observability inequality is somewhat different. More precisely, we need the
estimate

(1.95) Ie(O)[22 0 < C / /
vx(0,T)

for all solutions to (1.2).
This can be obtained as a consequence of the following Carleman estimates, sim-
ilar to (1.18) (see [30]):

I

2
on do dt

/ / 2% (s ) (|l + |Aq?) + 5N E|Val? + 8° A28 [g]?) da e
Q
9q

2
<C // 6_25&|Qt+Aq|2dxdt+s// 6—28&28 dodt] .
Q ¥ (0,T) 9

n
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Here, @ = a(x,t) and €= g(x,t) are appropriate weight functions, similar to a and
&, respectively.

Using (1.95) and arguments like those in the proof of Theorem 1.1, one can easily
deduce the null controllability of (1.94).

1.3.5. Other more general partial differential equations. The previous
null controllability results can also be extended to more general equations with suffi-
ciently regular coefficients. For instance, for the system

Y — Oi(aij(z,t) 9jy) =vlo in @,
(1.96) y=20 on X,
y(0) =y’ in Q
where the coefficients a;; € C?(Q) are uniformly elliptic, it is proved in [30] that

null controllability is achieved. This result has recently been improved in [51]; see
subsection 2.2.3 below.

2. Null controllability of other more general parabolic problems.

2.1. The case of the linear heat equation with general zero and first
order terms. In this subsection, we are going to prove the null controllability, with
distributed controls, of the linear heat equation with zero and first order terms and
coefficients in L>®(Q), i.e.,

ye — Ay + B(z,t) - Vy + a(z,t)y =vlp in @Q,
(2.1) y=0 on X,
y(0) = 3" in Q,
with ¢ € L2(Q2), a € L=(Q), and B € L>=(Q)". To achieve this, we will first prove
an observability inequality for the associated adjoint system
—pt —Ap =V (pB(z,t)) +a(z,t)p =0 in Q,
(2.2) p=0 on X,
o(T) = ¢° in Q.

More precisely, we will prove that

(2.3) [9(0)[220 < C / / o dedt
Ox(0,T)

for all o € L2(Q) for some C = C(Q, O, T, a, B). To this end we will use the following
lemma, which provides a suitable Carleman inequality (see [39]).

LEMMA 2.1. There ezist Ay = C(Q,0), s = C(Q,0)(T + T?), and Cy =
C2(2,0) > 0 such that, for any A > \a and any s > sa, one has

s\ // e |V dadt + 53\ // e 25 €3 g2 dx dt
Q Q
(2.4) < Cof 820 // e 250 g3 g dx dt
Ox(0,T)

+// e 25 | Fy|? da dt + s° )\2// e‘25a§2F|2dxdt>
Q Q
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for all functions ¢ € C(Q) with ¢ =0 on ¥ and ¢ + Aq = Fy +V - F, where Fy €
L2(Q), F € L*(Q)N. Here, o and & are the functions defined just before Lemma 1.3.

For the moment, let us assume that Lemma 2.1 is true and let us deduce an
observability inequality of the kind (2.3) for the solutions to (2.2). Fixing A = A2 and
applying Lemma 2.1 to ¢, we have

53 // e 25 €3 p|? da dt + s// e 25 ¢ V| da dt
Q Q
@5 <O < J[ et ol [[ e of e
Ox(0,T) Q

+ 2B / / §2|<P|2dévdt>
Q

for any s > s3. Consequently, we also have
(2.6) // e 23T — )3 || dr dt < C// e 23T — )73 ||? da dt
Q 0x(0,T)

for all s > C (T + T2 + T? (||a\|c2>é3 +||B||%,)), whence it is easy to deduce that

(2.7) // |2 dz dt < eCO+Y/THIaZ+IBIL) // |lp|? dx dt.
Qx(T/4,3T/4) 0x(0.T)

On the other hand, we also have (1.78) for the solutions to (2.2). This, together with
(2.7), leads to the desired observability inequality (2.3). Thus, we have the following.

THEOREM 2.2. System (2.1) is null controllable with controls v satisfying (1.80)
and (1.81).

Following [39], let us now give the proof of the Carleman inequality (2.4).

Proof of Lemma 2.1. Let ¢ = q(x,t) satisfy the hypothesis stated above and set
¢° = qli=7. Then ¢ can be viewed as a solution by transposition of the backwards
system

#+Aq=F+V-F in Q,
(2.8) q=0 on X,
qT) =¢° in Q.

In other words, for each G € L2(0,T; H=()) we must have

T T
(2.9) / (G (). q(t)) dt = — / (Fo(t) + V - F(£), 2(8)) dt + (¢, 2(T)) 2.

where z is the solution of the linear problem

zz—Az=G in Q,
(2.10) z=0 on X,
z(0)=0 in Q.

Here, (-,-) denotes the usual duality product between H () and H{ (£2).
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Let s and A be as in Lemma 1.3 and let us introduce the following fourth order
problem, which will be justified below:

E(e—Qsaﬁ*p) 4 83 )\4 6—2504 53 q= —83 )\4 6—25& 53 p]-O in Q,

(2.11) p=0, e 2L'p=0 on X,
(e7259L*p)(0) = (e 2**L*p)(T) =0 in Q.
Here, we have used the notation Lg = ¢, — Aq, L*q¢ = —q; — Aq. The partial

differential problem (2.11) possesses exactly one (weak) solution p with
212 [[ e Ul + 1p) + € VB + € pl?) dode < +oc.
Q

Indeed, let Py be the linear space
(2.13) Py={2€C*Q):2z=0o0n X}

and let us set

k(p,p) = // e~ 25 L L7 da dt
Q

(2.14)
+530 // e~ BB pp dedt Yp,p € Py
Ox(0,T)
and
(2.15) I(p) = —s> A\ // e BB gpdrdt Vp e P,.
Q

Then k(-,-) is a positive and symmetric bilinear form in Fy.

Let P be the completion of Py for the norm ||p|lp = (k(p,p))*/?. Then P is a
Hilbert space for the scalar product «(-,-) and, in view of the Carleman inequality
(1.18), we have that the functions in P satisfy (2.12). It is also clear from (1.18) that
l is a continuous linear form on P:

1/2
(2.16) ()| §C<s3/\4// e2%0 ¢ |q|2dxdt> Iplr VpeP.
Q

Consequently, from the Lax—Milgram lemma, the following variational equation pos-
sesses exactly one solution p € P:

(2.17) k(p,p') =1U(p") Vp' €P.

It is not difficult to see that the unique solution to (2.17) also solves the fourth order
problem (2.11) in the distributional sense.

Of course, the space P and the function p € P depend on the choice we have
made of s and A.

Now, let us set

(2.18) T=—e 2L, u=sNe P plo.
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It is readily seen from (2.11) that Z is, together with @, a solution to the null control-
lability problem

Z—AZ=sMe 223 g+ulp in Q,
(2.19) 2=0 on ¥,
Z(0)=2(T)=0 in Q.

For the moment, we will assume that there exist positive § = 3(Q, 0) and A = A\(2, O),

such that
s3I // 628“5_3|a\2dq;dt+// e 3|2 da dt
Ox(0,T) Q

(2.20)
+ 572N 72 // e 2|\ VP dedt < O3 )\4// e 25 &3 |g|* dr dt
Q Q

for all s > 5(T + T?2) and A > A.

Let us then prove (2.4). First, we will get an estimate for the second term on the
left-hand side of (2.4). In view of (2.9) written for G = s3\1e=25 &3 ¢ + Ulp, we
have

(2.21)
T
EBY // ¢—230 g3 |q|2d1:dt=—// qadxdt+/ (Fo(t) + V - F(t),5(t)) dt.
Q Ox(0,T) 0

Therefore,
83 )\4 // 6—2511 §3|Q|2 dx dt
Q
T 1/2 T 1/
< //e*ZSagi‘\quxdt //625a5*3\a|2dxdt
0JO 0JO
1/2 1/2
+ <// e‘szo|2dxdt> (// e25a|2|2dxdt>
Q Q
1/2
+ <// em25a £2|F|2dxdt> (// 20 5‘2V2|2dmdt>
Q Q

And now, using (2.20), we see that

53 )\4 // e—2sa 53 |q‘2 dz dt S C 83 /\4 // e—2sa 53 |q‘2 dz dt
Q Ox(0,T)
+ // e | Fo|? da dt + s* \? // e 22 | F)? da dt)
Q Q

for s > 5(T +T?) and A > .
Let us now get an estimate for the first term on the left-hand side of (2.4). To this
end, we multiply by sA?e~25* ¢ g the equation satisfied by ¢ and integrate in space

2

1/2

(2.23)
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and time. This gives

2 —2sa 2 )‘2 —2sa —2s« 2
sA //Qe ¢|Vy| dmdt—i—s? //Q ((e &) — Ale €)) g dz dt
(2.24) = s \? // e EFyq— EF -Vq)drdt
Q
—s\? // F V(e #*¢)qdx dt.
Q

Then we use the estimates
|(672sa ) | < 0672304 (ST§3 —|—T€2) < 052 7250463’
|A(€—25a£)| S CS )\26 23@53

// eQSagFoqudt‘ < C<53A4// e 2503 q|* dx dt
Q Q

+ 571 // 625a§1|F02dzdt>,
(2.26) Q
// e‘2sa§F-quxdt‘ gcsv// e 3¢ |F)? da dt
Q Q
1
+ =5 )2 // e 259 ¢ |Vq|? da dt,
2 Q

(2.25)
for s > C(T +T?),

s A2

s A2

and

s A2

// F.V(e % f)qdmdt’

Q

§C<SA2 // e" B¢ |F)? dedt + s° )\4// e s gl |q2dxdt>,
Q Q

to obtain from (2.24) the following:

3A2// 25“§|Vq|2dxdt<C<s /\4// e 25 €3 g2 dx dt
—I—// e | FolP da dt + s \? // e_QSa§|F|2dxdt>
Q Q

for s > C(T + T?). This, together with (2.23), provides (2.4).
Let us finally prove (2.20).
We first multiply the equation in (2.11) by p, so we have

(2.29) x(p,p) = —s3 \* // e 25 3 gpdx dt,

(2.27)

(2.28)

which, combined with the Carleman inequality (1.18) proved in Lemma 1.3, provides
the desired inequality for the two first terms on the left-hand side of (2.20).
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To estimate the first order term, we multiply by s~ 2A"2e25% ¢ =2 Z the equation

verified by Z. Then we integrate by parts with respect to the space variable and
get

sT2INT? // e 222 dudt + 572N T2 // e2 ¢ | V2| da dt
Q Q

— 257\t // e ¢7Ivn’ . VZ2de dt

(2.30) 9

— 257 2\71 // e2 72w’ . V2 2dr dt
Q

= s\? // EqZ+s2N72 // €% ¢ 202 dx dt.
Q 0x(0,T)

This time, let us integrate by parts in the first term with respect to the time variable:

sT2N72 // €25 7222 da dt
Q

1
(2.31) = —55*%*2 // (e ¢ ), |21 dw dt
Q

< Cs‘l)\‘2T// e |22 dr dt < C// e 212 dx dt
Q Q

for s > CT and A > 1.
Finally, we use Young’s inequality for the other terms of (2.30) and obtain

— 257\t // e ¢ty . V22 de dt
Q

(2.32) —23‘2)\‘1// e?5 o e2vn’ . V2 2da dt
Q

1
< C// e |22 da dt + 75_2)\_2// e ¢ 2| Vz|? dr dt,
Q 2 Q

(2.33) sv// £qz < C’(// e?se |2\2dxdt+53/\4// 6250‘§3|q|2dxdt>,
Q Q Q

and
sT2A72 // e ¢t uzdr dt
Ox(0,T)
(2.34)
<C // e |22 drdt + 53271 // e ¢73 |a)? da dt
Q Ox(0,T)
for s > C'T2.

As a conclusion, we deduce (2.20) directly from (2.30).
Remark 7. In the same spirit of Remark 4, it would be very interesting to know
whether or not the powers of s and A in (2.4) are optimal.
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2.2. Null controllability of other semilinear problems and further com-
ments. With the help of Lemma 2.1, Theorem 2.2, and some variants, we can now
prove the null controllability of other nonlinear parabolic systems. This is the goal of

this section.

2.2.1. Null controllability of the semilinear heat equation with nonlin-
earities in the zero and first order terms. In this paragraph, we will deduce the

null controllability of the system

yi — Ay + f(y, Vy) =vlp in Q,
(2.35) y=20 on X,
y(0) = y° in Q,

where we suppose y° € H}(Q) N Wh>(Q), f € CL(R x RY), £(0,0) = 0, and
(2.36) f(s,p) = g(s,p)s +G(s,p) -p V(s,p) e Rx RV

for some functions g and G satisfying |g| < C and |G| < C.
To this end, we will combine Theorem 2.2 and a fixed point argument.
Thus, let us consider the map

(2.37) z € L*(0,T; HY () — y. € L*(0,T; H} (),
where (y.,v,) is the solution of

(yz)t - Ayz + g(z, VZ) Y. + G(za VZ) Vy, =v.1p in Q,
(2.38) Y. =0 on Y,
y-(0) =", .(T)=0 in Q,

constructed as in the previous subsection. We know that
(2.39) v:ll2(ox 0.1 < K 190 200,

with a constant K of the form

1
210 K=ep{c (Lt 1+ 1002+ Tlgle + 0+ TIGIE )}

Now, one can check from parabolic regularity and the fact that g and G are uniformly
bounded that Kakutani’s fixed point theorem is applicable. For convenience, let us

state this result.

THEOREM 2.3. Let Z be a Banach space and let A : Z — Z be a set-valued

mapping satisfying the following assumptions:
1. A(z) is a nonempty closed convex set of Z for every z € Z.

2. There exists a nonempty convex compact set K C Z such that A(K) C K.
3. A is upper-hemicontinuous in Z, i.e., for each o € Z' the single-valued map-

ping

(2.41) zvw sup (0,Y)z/ z
yEA(z)

1S upper-semicontinuous.
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Then A possesses a fized point in the set K, i.e., there exists z € K such that z €
A(2).
For the proof, see, for instance, [3]. We then have the following result.
THEOREM 2.4. Under the previous assumptions on y° and f, (2.35) is null
controllable with controls v satisfying

(2.42) lvll2ox 0.1y < K 40120,

where the constant K is given by (2.40).

Now, we pretend to extend this result to the (superlinear) case where we only
have f € C*(R x RY) and f(0,0) = 0. This time, to apply similar arguments, one
must work in the space L>(0,T; W1>°(Q)) instead of L%(0,T; H}(2)). In fact, we
have the following result (see [16]).

THEOREM 2.5. Assume that f € C*(R x RY), f(0,0) =0, and (2.36) holds with

g(s,p) 0 G(s,p)

(2.43) a4
log® (1 + |s| + [p|) log!*(1 + s + Ip)

as |s| — +oo. Then (2.35) is null controllable with controls in L>=(O x (0,T)).
Remark 8. Asin Theorem 1.7, it is unknown whether system (2.35) is controllable
when

(2.44) l9(s,p)| ~1og” (1 +[s| +[p]) and/or |G(s,p)| ~log”(1+ |s| + |p|)

with 3> 3, v > 1.

Let us now address other typical controllability problems in this context.

(A) Going back to system (1.83), with no hypothesis on the growth of f, the
null controllability can be achieved if f possesses the “good sign,” that is to say, if
f(s)s>0forall s € R.

In this situation, it can be proved that, for any p > 0, there exists a time T =
T(Q,0, f,p) > 0 such that, for every y° € L?(Q) with ||y°]12(q) < p, there exists a
control v € L*(O x (0,T)) whose associated solution y verifies y(T') = 0 (see [2], [5],
and [28] for more details).

(B) Using methods similar to those above, the exact controllability to the trajec-
tories can be deduced as well. For instance, the following result is proved in [16].

THEOREM 2.6. Let us assume that y° € H}(Q) N WH°(Q), f € CL(R x RY),

1 Lor '
2.45 / == (50 4+ As, po + Ap)dA| — 0
( ) 10g3/2(1+ |s|—|—|p‘) 0 88( 0 Po p)
and

1 Lor
2.46 / S0+ As,po + Ap d/\’ —0
(246 o8 21+ 15+ 1) Do 900 0+

for 1 < i < N as |(s,p)] — 400, uniformly in (so,po) € K for every compact set
K CcRxRN. Let ¢ € HY Q) N Wh(Q) and v. € L>®(O x (0,T)) be given and
let y. € C([0,T); Wh22(Q)) be the corresponding solution to (2.35). Then there exists
v € L®(O x (0,T)) such that its associated solution y verifies y(T) = y.(T).
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2.2.2. Heat equations with Fourier boundary conditions. In this para-
graph, we will recall some recent results concerning the null and exact controllability
to the trajectories of the following partial differential systems:

yu—Ay+B-Vy+ay=vlp in Q,

(2.47) 37721 +8y=0 on X,
y(0) = y° in Q
and
Yy — Ay + Fy,Vy) =vlo  in Q,
(2.48) % +f(y)=0 on X,
y(0) =" n Q,
where y° € L?(9),
(2.49) a€L®(Q), BeL®Q)"N, pecL>X),
and (for instance)
(2.50) FeC'RxRY), feC'(R).

Let us first deduce a null controllability result for (2.47). To this end, we will need,
as before, an observability estimate for the solutions to the adjoint system associated
to (2.47).

Thus, let us consider the backwards system

—pr —Ap =V - (pB(z,t)) +a(z,t)p=0 in Q,
(2.51) (Vo + 9 B(z,t) -n+ Bz, t) =0 on X,
o(T) = ¢° in

where ©° € L2(€). For the solutions to these problems, one has the following Carle-
man inequality (see [21]):

(2.52) // e 25 k3 )P dadt < C // e 2% k3 || da dt
Q 0x(0,T)

for appropriate positive weight functions x and ¢ (similar to those defined in section 1)
depending on a parameter A and a suitable choice of s and A. The proof of (2.52)
can be achieved using duality arguments similar to those presented in the proof of
Lemma 2.1.

From (2.52), one can easily deduce an observability inequality for the solutions
to (2.51). This yields the next null controllability result.

THEOREM 2.7. Let (2.49) be fulfilled. Then, for all y° € L*(Q), there exists a
control v € L>*(O x (0,T)) such that the associated solution to (2.47) verifies

(2.53) y(T)=0 in Q.
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Finally, the same arguments used in [28], based on the explicit dependence of the
constant C' in (2.52) with respect to T and the L*-norms of the coefficients a, B, and
0, lead to an exact controllability result to the trajectories for the nonlinear system
(2.48).

THEOREM 2.8. Let (2.50) be fulfilled and let § be a solution of the nonlinear
system (2.48) with v = 0 such that

ye L*(0, T H' () N L¥(Q), 5(0) € LX(Q).
Moreover, assume that the functions F and f verify

(2.54) i D —Feol

lsl—oc |5 — r|log®2(1 + |s — r|)

uniformly in (r,p) € R x RV,
VL >0,dM >0 such that
(2.55) |F(s,p) = F(r,p)l < M|s —r|, [F(s,p) — F(s,q)| < M|p — q|

and

. |f(s)— f(r)] _
(2.56) e s 10g Pt s —r])

uniformly in r € R. Then there exist controls v € L>(O x (0,T)) and associated
solutions y to (2.48) such that y(T) = y(T).
For the proof of this result and other related questions, see [22].

2.2.3. Null controllability of some variants of the heat system. Here, we
are interested in solving the null controllability problem of more general parabolic
systems, where various coefficients appear in the differential equation.

We first consider the case of a general second order differential operator in the
heat system—more precisely, the following problem:

N
ye— Y Oi(ai; dy) =vlo in Q,
(2.57) =1
y=20 on X,

y(0) = y° in Q,

where y° € L?*(Q) and the coefficients a;; = a;; € Wh°(Q) (1 < i,j < N) form a
uniformly elliptic matrix. For the solutions to the adjoint system associated to (2.57)
(which is in fact the same), we find a global Carleman inequality in the recent paper
[61]. Of course, this leads to the null controllability of (2.57).

Analogously as we found in Theorem 2.2, this allows us to deduce a null control-
lability result for (2.57) in a more general case.

THEOREM 2.9. Let us assume that, in (2.57), the coefficients a;; are of the form
aij = af;+¢ hij with af; = af; € W*°(Q) uniformly elliptic, (T—t)"2hy; € L®(Q)
and € small enough, depending on Q, O, T, a?j, and h;j. Then, for any T > 0, system
(2.57) is null controllable at time T'. ‘
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For the proof of Theorem 2.9, it suffices to combine the previously mentioned
result for general a;; € W1>°(Q) with Lemma 2.1 adapted to this situation.
The second case we consider is the following:

N
Yt — Z Q5 5'1‘;'2! =vlp in Q,

(2.58) b=l
Y= 0 on Z,

y(0) =4 in 9
with y° € L?(Q). To prove the null controllability of (2.58), we can use a recent
Carleman inequality which can be found in [23] for heat equations with right-hand

sides in L2(0,T; H~2(Q2)). This is given in the following result.
LEMMA 2.10. Let us consider the following problem:

N
—z — Az = Z O0i;Hi; in Q,

(2.59) Q=1
z=0 on X,

2(T) = 2° in €,
where zg € H1 () and the functions H;; verify H;j € L*(Q) with

N N
(2.60) > 0;Hy; € I*(Q) and Y Hijn; =0.

j=1 j=1

There ezist constants C3(Q,0) > 0, A3 = C(Q,0), and s3 = C(Q,O)(T + T?) such

that
s34 // e 22 dadt < Cs| s3\1 // e 250 3 2|2 da dt
Q 0x(0,T)

N
+sIA Y //Q e 2o gt |Hij|2dxdt>

ij=1

(2.61)

for all A > A3 and s > s3.
Let us introduce the adjoint system to (2.58):

—pt — Oij(aij o) =0 in Q,
(2.62) p=0 on X,
o(T) = ¢° in Q.
A simple application of Lemma 2.10 gives the following result.

THEOREM 2.11. Let T' be an arbitrary positive time. Let us suppose that a;; =
6ij +ehi (i, =1,...,N) with (T — t)_l/zhij € L*°(Q) and £ > 0 small enough,
depending on Q, O, and T. Then (2.58) is null controllable at time T.

Let us finally consider the control problem

by — Ay =vlp in Q,
(2.63) y=0 on 3,
y(0) =y’ in Q,
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whose adjoint system is the following:

—(bp)t —Ap=0 in Q,
(2.64) p=0 on X,
o(T) = ¢° in Q.

In order to analyze the null controllability of (2.63), we need a Carleman inequality
for heat equations with right-hand sides in H—1(0,7T; L?(f2)). Its proof can also be
found in [23].

LEMMA 2.12. Consider the system

—zi — Az = G4 Q,
(2.65) =03,
2(T) = 2 Q,

where 2° € H=Y(Q) and G € L*(Q) with G € Cy([0,T]; H~*(Q)). Then there exist
Cy(9,0) >0, \y = C(Q,0), and s, = C(Q, O)(T + T?) such that

s34 // e 23 22 dadt < Cy| s>\ // e 725 €3 2|2 da dt
Q Ox(0,T)
+ st // e 2% ¢ G da dt)
Q
for all A\ > Xy and s > s4.

From this Carleman inequality, one can readily deduce the following result.

THEOREM 2.13. Let T be a positive time and let us assume that b =14 ¢ h with
(T —t)~Y2h € L>=(Q) and ¢ > 0 small enough, depending on 0, O, and T. Then
system (2.63) is null controllable at time T .

Remark 9. The proofs of Lemmas 2.10 and 2.12 are based on the duality argu-
ments presented in Lemma 2.1. Observe in particular that the solutions to systems
(2.58) and (2.63) belong only to L?(Q) and must be defined by transposition.

3. Null controllability of systems of the Stokes kind. In this section, N =
2 or N = 3. The controllability properties of the Navier—Stokes system have been the
subject of intensive research these last years. The question was first considered by
Lions in [48], where approzimate controllability was conjectured. This was followed
by several papers, where various partial (positive) answers were furnished. See [18],
[10], [11], and [50]. Concerning null controllability and exact controllability to the
trajectories, the first local results were given in [29].

For completeness, we will recall briefly one of the main results in [10]. This
paper deals with the approximate controllability of the two-dimensional Navier—Stokes
equations with Nawvier-slip boundary conditions on the lateral boundary 992 x (0,7).
Thus, let us assume that the state equation is

(2.66)

y+ (y - Vy—Ay+Vp=vlp, V-y=0 in Q,
(3.1) y-n=0 Vxy=0 on X,

y(0) =4° in Q
(where Q C R?). The general fact the author makes good use of is the treatment of
(y - V)y as the leading term, while —Ay is considered as a “disturbance.”
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Roughly speaking, the following is proved: Let y° and y' be two prescribed
velocity fields. Then the fluid can be driven from 3° at time ¢ = 0 to a velocity field
at time t = T which is arbitrarily close to y'. Here, “arbitrarily close” means that,
for instance, the distance of the velocity field to y! in W=1°°(Q) and the distance of
the vorticity to V x y1 in all spaces L (K) (K C € is an arbitrary compact set) can
be made arbitrarily small. This is proved for any 7' > 0, for any regular €, %, and
y!, and for all nonempty open sets O C §.

The proof is as follows:

1. For each a > 0, it is possible to find v, and a couple (ya,ps) such that y, is
a gradient outside O x (0,7,

Yot + Wa - V)Ya — AYa + VDo =valo, V-y,=0 in Q,
(3.2) Yo -m =0, VxXy,=0 on X,
Ya(0) = ya(T) =0 in 0

and, furthermore, the linearized Euler system at y,, that is to say,

(3.3) zt+ (Yo V)z+ (2 Vya +Vr=wlp, V-z=0 in Q,
' z.n=0, Vxz=0 on X,

is a-controllable in the following sense: For any given zp and z4 of class €, there
exists a control w such that (3.3) possesses at least one solution bounded in C3(Q)
independently of « and satisfying

z(0) =2 in Q
and
2(T)=2zq in {xe; dist (z,00) >a}

(notice we are saying that, for every «, this property is satisfied for any zp and zg).
2. Let us set v(x,t) = 0in (3.1) for ¢t € [0, (1 —6)T] (6 will be determined below).
This defines y and p without ambiguity in © x [0, (1 — §)T] and, in particular, we can
speak of y((1 —6)T). In [(1 — 6)T,T], we do the following:
o First, v, Yo, and p, are rescaled. In view of the a-controllability of (3.3),
we introduce a first control function v:

(1) = %va (g; %(t —1- 6)T)> + w(m, %(t (1- 6)T)).
The associate state is
.5) = ;(ya,pa)(x, %(t (- 6)T)> + () <x %(t - 6)T)).

Here, w and (z, 7) are perturbations depending on « (which will be also fixed
below), the initial state y((1 — 8)T), and the desired state y4. In order to
drive (3.1) to a final state close to yg, it is natural (at least formally) to look
for a control close to v for t € [(1 — §)T,T].

e We introduce a second control function by modifying v just as needed. Thus,
we solve the following problem:

v+ (y-V)y—Ay+Vp=vlo+(Vxyy-9>", V-y=0 in Q,
yn=0 Vxy=0 on X,
y(0) = ¢° in Q.
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Here, we have introduced the function

1 1
st) = o (5,50~ (1= 9D)). (01,00 = (az,an)
Since V x 7 vanishes outside O x (0,T), it is clear that (y, p) solves (3.1) with

v=0+(Vxy)(y -y

Now, the task is reduced to show that for every € > 0, there exist positive o and
6 such that

(3-4) [y(T) = yallw-1 <e.

This can be achieved in the following way. Let us set R =y — 3", w = V x R. Then
Ow+ (R+1y") Vw—Aw=—(R+2)-V(V x2)+A(V x 2)

in Qx ((1—=96)T,T). Furthermore, R(x, (1 —6)T) =0 and z and all its derivatives of
order < 3 are uniformly bounded. This leads, at first time, to a pointwise estimate
of w and then to an estimate of R(-,T) in W~1°°(Q)) when « and § are sufficiently
small. Consequently, for any given € > 0, there exist a® > 0 and 7 : (0,a°) — R,
such that whenever 0 < a < a® and 0 < § < n(«a), one has (3.4) (for further details,
see [10]).

This method has several limitations. Thus, the boundary conditions have to be
of the Navier-slip type. In practice, this is equivalent to prescribing the values on the
boundary of the stream function and the vorticity. At present, it is unknown how
the method has to be modified in order to keep its validity in the context of Dirichlet
(no-slip) boundary conditions. The case in which  is a manifold without boundary
is considered in [11].

An extension of this method to Boussinesq systems in spatial dimensions N = 2
and N = 3 has been given in [31]. For the analysis of the similar three-dimensional
situation for the Euler equations, see [33].

In the remainder of this section, we will be concerned with the null controlla-
bility of Stokes-like and Navier—Stokes systems completed with Dirichlet boundary
conditions. Let us recall the definition of the following spaces, which are usual in the
analysis of Stokes systems:

V={zeCFO)":V-2=0in Q}

and

H (resp., V) = the adherence of V in L*(Q)V (resp., H}(Q)N).
We have
(3.5) H={zeL* QN :V.-2=0inQ,z-n=00n 00}
and
(3.6) V={zecH QY :V-2=0inQ}.

For instance, see [55].
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3.1. Null controllability of Stokes systems. We are first interested in prov-
ing the null controllability of some systems of the Stokes kind with distributed control.
In other words, we would like to be able to find v, y, and p such that

—Ay+V-(yey) +V - (Jey)+Vp=vlo in Q,

V-y=0 i ,
(3.7) Y i@
Yy = 0 on E,
y(0) =° in Q
and
(3.8) y(T)=0 1inQ

for any y° € H. Here, we will assume that the following regularity properties hold:
(3.9) ge L@, 7 €L0.T:L7(Q)",

witho >1if N=2and o > 6/5if N =3.

Let us remark that (3.7) can be viewed as the linearized Navier-Stokes system,
so we are actually trying to prove the exact controllability to the trajectories of those
equations. In fact, this will serve to deduce the local exact controllability to the
trajectories of the Navier—Stokes equations.

A previous result of this kind was proved in [37] under stronger hypotheses on the
trajectory y. In what follows, we will sketch the arguments presented in [24], which
are also based on those in [37].

Concerning the null controllability of (3.7), we will first recall a Carleman in-
equality for the backwards system

—pr —Ap— (Dp)y+Vr=0 in Q,

V-p=0 i ,
(3.10) 4 @

p=0 on X,

o(T) = <,00 in Q,

where Dy = Vi + V! and, consequently, the ith component of (D)7 is

N
(3.11) = (059" + 0i¢)

j=1

To this end, let us introduce the following weight functions:

&5/ klnllce _ oAKlInlloo+n(x)) Al +n(z))
t = t = V-
ﬁ(xv ) t4(T _ t)4 9 7(377 ) t4(T _ t)4 bl
(3.12) A(t) = min B(z,t), B*(t) = max f(z, 1),
xEQ z€eQ

A(t) = maxy(z,t), ~*(t) = miny(z,t).
e €N

Here, k > 4 is a fixed number and 7 is the function given by Lemma 1.2 associated
to w = 05 CC O. Then we have the following.
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LEMMA 3.1. Let us assume that (3.9) is satisfied. Then for every ¢° € H there

exist three positive constants s, A\, and C depending only on  and O, such that

st // e~ 2P L l¢|? da dt + s // e 1 |Ap|? dx dt
Q Q

(3.13) + s\ // e 2Py |Vo|* do dt + s\ // e 2P 3 |p|? d dt
Q Q

< 0516)\40(1 + T2) // 6—833+635* alﬁ |<p|2 de dt
Ox(0,T)

for all A = X1+ [Flloo + 17132 1oy + 1I%) and s > 5(T* + T%).

The proof of Lemma 3.1 is given in the next subsection. Notice that the hypothe-
ses imposed above over 7 are not completely satisfactory. In fact, it is expected (and
desirable) that an inequality like (3.13) hold for any 7 € L>°(Q)", but for the moment
this is unknown.

Now, from this Carleman inequality, one can deduce the null controllability of
(3.7) in a classical way.

THEOREM 3.2. Let us assume that (3.9) holds. Then for any T > 0, the linear
system (3.7) is null controllable with controls v € L?(O x (0,T))N at time T.

After some additional work, one can also deduce some local controllability results
for the Navier—Stokes equations. Specifically, we mean local exact controllability to
the trajectories. Thus, let us introduce the Navier—Stokes system

vy —Ay+V-(y®y)+Vp=vlp in Q,

V.-y=0 i ,
(3.14) Y i

y=20 on X,

y(0) = ¢° in Q.

We have the following.
THEOREM 3.3. Let (7,D) be a solution to the Navier—Stokes problem

U —AY+V-(Gey)+Vp=0 in Q,
V-7=0 ' ,
(3.15) vy i Q
7=0 on X,
7(0) =7° in

verifying (3.9), and let us introduce the space E, with
(3.16) E=H if N=2 and FE=HNL*Q)?® if N=3.

Then there erxists € > 0 such that for each y° € E satisfying ||[y° — y°||g < ¢, there
exist controls v € L*(O x (0, T))N and associated states (y,p) such that one has (3.14)
and

(3.17) y(T)=y(T) in S

This result can be proved by arguing as follows. We deduce in a first step a null
controllability result for (3.7) with suitable right-hand side f.
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More precisely, let us set Ly =y — Ay+ V- (T @y + y ®7) and let us introduce
the spaces Ey, with

By ={(y,v): 62557317*%715/4% 643873313*%78”1&) e L2(Q)?,
e 2 (y") "y € L2(0,T3V) N L%(0,T: H),
Fp: e (v7) ALy + Vp - oly) € LA(0, T HH(Q)P)
and
By ={(y,v): ezséfsb*af15/4y’ 643673517*378““) e L2(Q)?,
e ()" hy € L2(0,T: V) N L*(0,T; H),
e 2 (y") "y € LN0,T: L(2)%),
Iz e ()72 (Ly + Vp - oly) € LA, TsWHH(Q)) 1,
where the new weight functions b, b*, etc., are given by

e5/4Am|n°llee _ A(mlIn°|leo+n° ()

£(t)% ’

b(x,t) =

~

b(t) = minb(z,1), b (1) = maxb(z,1),
zeQ e

A0’ oo +n° ()
t) =
'Y($7 ) E(t)4 J

J(t) = maxy(z,t), ~*(t) = miny(z,t).
zeQ €N

Here, we have introduced
T?%/4 for 0<t<T/2,

t(T—t) for T/2<t<T.
We then have the following.
PROPOSITION 3.4. Assume that ¥ satisfies (3.9) and
o 0 c H, e (v*)"2f € L*(0,T; H-'(Q)?) if N = 2;
e 0 c LY Q)P NH, e (v*)"1/2f € L2(0,T; W 15(Q)3) if N = 3.

Then there exists a control v € L*(w x (0,T))™ such that if y is the associated
solution to (3.7), we have (y,v) € Ey.

Notice that this is actually a null controllability result for (3.7). Indeed, if (y,v) €
En, we have in particular that y(T) = 0 in Q.

The rest of the proof of Theorem 3.3 relies on an appropriate inverse mapping
theorem. More precisely, we use the following result from [1].

PROPOSITION 3.5. Let X, F' be two Banach spaces and let A : X — F satisfy A €
CH(X;F). Assume that ey € X, A(eg) = hg, and A'(eg) : X — F is an epimorphism.
Then there exists § > 0 such that for every h € F satisfying ||h — ho||p < 6, there
exists a solution of the equation

{(t) =

Ale)=h, eeX.
Let us consider the mapping A : X — F, given by
Ay, v) = (Ly + (y - V)y + Vp — vl y(-,0)) V(y,v) € X,
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where X = Ey and
L2 ()" Y2, H Y (Q)?) x H if N =2,
L2 (e (v*) VB WL5(Q)3) x (LYQ)* N H)  if N=3.

From the definition of Fp, one can easily check that A is well defined and satisfies
A € CH(X; F). Furthermore, the identity

Tm(A'(0,0)) = F

is equivalent to the result stated in Proposition 3.4. Therefore, we can apply Propo-
sition 3.5 to A with eg = (0,0) and hg = (0,0). This ends the proof of Theorem 3.3.

For more details concerning the local exact controllability of (3.14), see [24]; see
also [25].

3.2. Proof of the Carleman inequality. In this subsection, we sketch the
proof of Lemma 3.1. This is contained in a more general case covered by the results
in [24]. Throughout the proof, C' will denote a generic positive constant that may
depend on  and O and can change its value from one line to the next.

For easier comprehension, we will divide the proof in several steps.

3.2.1. Carleman estimate for the heat equation and first estimate of
the pressure. Let us apply the Carleman inequality (1.18) to each component ¢*
with right-hand side

(3.18) —0im+ ((De)y)i (1 <i<N).

Introducing the notation

(s, x0) = 5 / /Q 20 (o ? + |Al?) du dt

(3.19)
+ s\? / e 2Py |Vy|? dedt + s°\* // e 20 ~3 |o|? du dt,
Q Q
one has
I(s,\;0) < C s\ // e 2P 43 | dx dt
(3 20) O5X(0,T)

o258 72 712) d
+//Q (V72 + (D) 712) d dt)

for A > C and s > C(T7 +T%).
Taking A > C |||l and s > C'T®, one can eliminate the term |(Dy)7%|? on the
right-hand side, whence we obtain

(3.21) I(s,\;0) < Cf s\ // e 2P 43 p|? dx dt + // e 2P |Vn|? da dt
O5><(O,T) Q

for A > C(1 + [|J|leo) and s > C(T* + T%).
Let us now present an estimate of the last integral. To this end, we will apply
the main result in [38] to the elliptic equation

(3.22) ~An(t) = -V - ((De)F)(t) in Q
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for each ¢ € (0,7). This provides
(3.23)

An
/ 627—5
Q

Vr(t)]? dr < C</ eZTeM(|V7r(t)|2 + 72N2 M (1)} da
o

5

+ T/ eQre*n e’\” |(D<,0) y(t)|2 dz + 7_1/2 627- w(t)ﬁp/z(am)
Q
for A\, 7 > C.

One can readily see that the local term of |[Vr|? can be eliminated by arguing as
in the proof of Lemma 1.3, so we obtain

(3.24)

/ e2re™” |V (t)]? de < C<7'2)\2/ e2me™ ¢2Mn |7(t)|2dx
Q O4

An . -
_’_T‘/QeQTe e>"7|(DS0)y(t)|2d$+T1/2€2 7T(t)|§11/2(652)>

for an open subset Oy verifying Os CC Oy CC O.

Next, we put
_ s Akl oo
(3.25) T = T Il
we multiply (3.24) by
(3.26) Y i
' P T —6)* |7

and we integrate with respect to ¢ in (0,7"). This yields

// e 2P |V dedt < C( s*\2 // e 202 |7|? da dt
Q 04 x(0,T)

(3.27) +s//@ e 2Py |(Dy) g|* da dt

T
—|—81/2/0 6723[3 (,Y*)l/? ||7T(t)H§{1/2(BQ) dt)

for A> C and s > CT8.
Let us now estimate the term containing the trace of 7 following the ideas of [37].
Thus, let us introduce the functions

(328) QD* _ S1/4 efsﬁ" (7*)1/4¢ and 7 = 51/4 efsﬁ" (7*)1/4 T,
which satisfy

—pf = Ap" + V" = (D" ) — s (e () )i i @,
v . (p* = 0 in Q,
" =0 on X,
©*(T)=0 in Q.

(3.29)
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Using well-known regularity properties of the Stokes system, we find

(3.30)

|ww;mmHmwm>zc(/QquyF+§”«fw%v1M>|W|dxm>

< 1/2 // —2sp3™ 1/2 |<D(p) y|2 da dt
4§52 2 // e 20 ()3 wIdedt>
Q

for s > C'T®. This, used in combination with (3.27), leads to the inequality

// e 2P |\ VP dedt < C| s )\2// e 20 ~2 |7 da dt
O4><(0 T)

(3.31) +s //Q e 20~ |(Dy) 7|* dx dt

+s5/2T2// —2sf 3|g02da:dt>
Q

which must hold for A > C and s > C T8.
We finally insert this inequality into (3.21) and absorb the last two terms on the
right-hand side:

(3.32) I(s,\;0) < Cs2\? // e 2B (sA2 3 || + 2 |7)?) dx dt
O4><(0 T)

for A > C(1+ ||7]l«) and s > C(T* + T%).

3.2.2. Local estimate of the pressure. The goal of this paragraph is to esti-
mate the local integral of 7 appearing in (3.32). This is the most complicated part of
the proof. Let us assume that we have chosen 7 such that

(3.33) /O m(t)dz =0 Vte (0,T).

Then from the definition of the weight functions and the Poincaré—Wirtinger inequal-
ity, we have

s2\? // e 2B 2 x| dodt < s2X\2 // 6_283’/7\2 |7|? da dt
04 x(0,T) O4x(0,T)

< 052\ // e 2832 | V|2 du dt.
O4><(0,T)

Recall that 3 = B(t) and 5 = J(t) are given as follows:
(3.35) B(t) = min Bz, 1), A(t) = maxy(z. ).
Q Q

(3.34)

From the differential equation in (3.10), we deduce that in order to estimate the
last integral in (3.34), it suffices to bound locally the Laplacian and the time derivative
of the velocity field ¢.



Downloaded 05/20/16 to 150.214.182.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

CARLEMAN, PARABOLICITY, AND CONTROLLABILITY 1435

A local estimate of Ayp. Let us first introduce two open sets Oz and Os, with

(3.36) 04 CcCO3CcCOy,CCO,
and a function p € D(Os), with p =1 in Os.
Next, we put
(3.37) u(z,t) = p(t) p(x) Ap(z, T —t) Y(x,t) € RN x (0,T),

where we have denoted by p the function p(t) = sA esP 7.
From (3.10), we obtain

(3.38) (Ap(T = 1))t — A(Ap(T —t)) = f inQ,
with
(3.39) f@)=A((D) YT —t) = V(V - (D) Y)(T —t)).

This provides the following heat problem for the function w:

—Au=F in RN x(0,7),
(3.40) {ut u in x (0,7T)

u(0) =0 in RV,

with

(341)  Ft)=ppf+D pAp(T —1)=2pVp - VAQ(T —t) = pAp Ap(T — 1)
for all t € (0,T). Then we rewrite F in the form F = Fy + Fy, with

Fi(t) =pAlp(De)9)(T — 1)) =PV (V- (o((De) YT — 1))

(342 + 0 Alpp(T — 1))
and
Fy(t) = =2pVp - V((DL)P)(T —t) — 5 Ap (D) J)(T — 1)
(3.43) +BV(Vp- (D)) = 1) +5Vp- (V- (D) YT — 1))

=20'Vp-Vo(T —t) = Dpp(T —t) = 2pVp - VAp(T — t)
—PpApAp(T - 1),

and we define u’ (i = 1,2) as the solution to

(3.44) {u}; —~Au'=F, in RN x(0,7),

u'(0) =0 in RN.

An estimate of u'. Let us remark that Fy € L2(0,T; H2(RY)"), while we would
like to estimate the L2-norm of u'. Accordingly, we have to define u' like a solution by
transposition. More precisely, u' is the unique function in L2(R~ x (0, T))¥ verifying

// ul-kdxdt:// 5 (D) (T — 1)) - Az da dt
RN x(0,T) RN x(0,T)

(3.45) —//RN . T)]?p((Dgp)@(T—t)).V(V.z) dx dt

+// P pp(T—t)- Azdzdt
RN x(0,T)
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for any k € L2(RY x (0,T))", where z is the solution of

—z—Az=k in RY x(0,T),
(3.46) { 2 z in x (0,T)

2(T)=0 in RN.

Then we get the following directly from (3.45):

// |ut|? da dt
RN x(0,T)
(3.47) <<7<// o (Do) gP dwar+ [[ |ﬁp¢2dxﬁ>
RN x(0,T) RN x(0,T)
<0<[/ W|Dwm%mm+// @PWPM&).
02 x(0,T) 02 x(0,T)

An estimate of u?. This time we must take into account the fact that the function
F, belongs to the space L2(0,T; H-*(R™)N). But it is also essential to remember
that supp F» C Oy \ O3, since derivatives of p appear everywhere. This allows us to
write, for x € Oy,

t
(3.48) u?(z,t) = / / G(r —y,t — s) Fa(y, s) dy ds,
02\63
where G is the fundamental solution of the heat equation, i.e.,
1 _ |”—'\2 N
(349) G(l‘,t) = W@ 2t \V/(l‘7t) e R x R+.

Now, we integrate by parts with respect to y in (3.48), taking all the space derivatives
out of (D¢) 7y and ¢. This gives the following equality:

(3.50) (z,1) //O DyG(z —y,t—s) Dgp(y) Wa, (Y, s) dy ds,

2\O3 qer ﬁeJ

where

(3:51)  wap(y,s) = (AasD(s) + Bag P (5))e(y, s) + Cap P(s) (D) §) (v, 5)

for appropriate constants A, g, Bqa g, and Cy g,
(3.52) ITc{yeNV:|y <3} and Jc{yeNV:1< |y <4}

Next, we denote by d the quantity d = dist(003,004), we fix § € (0,d), and we
observe that

62 _

Therefore, we deduce from (3.50) that

t 2
sy Wanlc [ [ e

U)(y, 8)| dy ds V($7t) € 04 X (OaT)a
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where

(3.55) w(y, s) = (P(s) +P'(s))e(y, s) + P(s) (D) §) (v, 9)-

Integrating with respect to x and ¢ in O4 x (0,T), we find that

//O o) \u2 2dxdt<CT/ / -8/ (t— s)Hw(y s)||L2 (02) ds dt
4><

(3.56)
=C *
T / (fo# fo)(0) dt
where
(3.57) A@ =et and  fot) = [w(t)]20,)-

Notice that f1, fo € L'(0,T). As a consequence of Young’s inequality, we have

// \uQ\QdmdthT// |w|? dx dt
04 x(0,T) O2x(0,T)

(3.58) < cT( / / (1B + 17 P)of? da e
OQX(O,T)

+ / / P12 (D) 312 da dt>.
OQX(O,T)

Combining this with (3.47), we obtain the local estimate of Awp:
(3.59)

o [ s aglarar < ca +T>< [ P+ PP dode
04%(0,T) 02x(0,1)

+ / / P12 (D) 712 da dt>.
OQX(O,T)

A local estimate of ;. Let us first introduce the weight function p, with
(3.60) p(t) = s'%/4 o~ 25B+s8" F15/4,

By setting (1,0) = (p, pm), we have
=AY — (DY) +VO=—p'p in Q,

(3.61) v-y=0 @
=0 on X,
Y(T) =0 in Q.

Recall that the term we have to estimate is

(3.62)
J[ o ppleraa= [ R e
04%(0,T) 04 x(0,T)

11/2)2 // 6—235*+2s/§§—11/2 Iy —p/@‘Z da dt.
04 x(0,T)
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Hence, we will try to estimate the (weighted) L?-norm of the time derivative of 1. To
this end, we integrate by parts with respect to ¢:

s—11/2)2 // 67256*4»235;)7711/2 |wt‘2 de di
O4><(0,T)
1 * G~
(3.63) g [ (e P dsds
O4><(0,T)

_g—11/2)2 // 672sﬁ*+2sa 3711/2 Wre b d di.
O4><(O,T)

One can easily check that
(3.64) 5 11/2)2 (6725ﬁ*+235 7711/2)& <CsT2\2T? 6725,8*+sz 73

for s > C T®.
Therefore, we must concentrate on estimating the last term in (3.63). Now, we
first denote by p* the function

(3.65) pt =g /2N o—28B8"+2sp 3711/2

and then use Holder’s inequality:

A8 / / P* Y do dt < S 0" Yulla 0100000 16 20,7520 01
O4><(O,T)

3.66 *
(3.66) < 20p* el 2207, 1(00))

12 2
+2A ||’(/}HL2(0,T;L‘1,((94))’

where ¢ is chosen lower than ¢ but greater than 1 in dimension N = 2 and greater
than 6/5 in dimension N = 3, and ¢’ is the conjugate exponent of ¢ (recall that o > 1
if N=2and o >6/5if N =3).

Let us first deal with the second term on the right-hand side of (3.66). Let
p € C%(03) be a cut-off function satisfying

(3.67) supp p C O3 and p=1in Oy.
Then

W02 o 0y < IAGE)E 200

(3.68) 2
= [|Apt) +2Vp - Vi + p Al T2 (12 (0,))-

Following the same steps as in the previous section for obtaining the local estimate of
Ay, after some long computations, one can readily get an estimate of the last term
on the right-hand side of (3.68). Consequently, we have

(3.69)
050,00 00y < CO+ TN +T) [ o P4 VO o) it
1 %X (0,

where 07 is an open set verifying

(3.70) Oy, CcCc O CccO.
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Finally, we treat the norm of p*¢y; in (3.66).
Observing the problem verified by (p* v, p* 0;), one can obtain the next a priori
estimate for :

™ rll 2oy < (14 [[Flloo) @HFTI ([ p" | 2 12)
PP eellzacee) + 110 Yellra ey + 0" (DY) Fellpz(ray) -
Consequently, from (3.62)—(3.66) and (3.69)—(3.71), we have

/ / B2 |or]? e dt
O4><(0,T)

_ —112
< (14 |[71%) 0TI (X121 4+ T)(Ip ol 120,

(3.71)

(3.72)
o Vel iarzo) + 10072 1200,)) + 10° 0" @llT2(12)

+ "0 el Ta o2y + 107) el T2 re) + llp* (Dw)?tl\%z(m)) :

An estimate of p* (D) y,. Let £ € (1,+00) be given. In this section, we will
prove that for § € L>(Q)", we have p* 1 € L>(0,T; WH¥(Q))N for all £ < oo, and
we will get an estimate of its norm. Once this is established, we will directly obtain
an estimate of p* (D)7, in L%(L?) (taking ¢ large enough).

Thus, let us look at the system fulfilled by (p* ¢, p* 0):

") =A@ YY) =D Y)Y+ VP O) =) v -p'pe in Q,

V(") =0 in Q.
(3.73) p =0 on X,
(0" ¥)(T) =0 in o

We can first view 1 as a function in
(3.74) L0, T; H*(Q)N) N L>(0,T; V).

Then, using interpolation inequalities, we have that D(p* )y € LF1(L*?), with 2 <
k1 <4 and 3 < k3 < 6 (which will be chosen below) verifying
Y3, 2

+—=1

(3.75) T

Using well-known regularity properties of the Stokes system (see [32]), we obtain from
(3.73) that

(3.76) p* € L0, T; WM (9)7)
and

B77) P Pllprawekay < CUI@™) % + 2" P @l (pray + [1Ullecll V(P )l i1 (152)-

We can now perform a bootstrap argument again based on a priori estimates of
the Stokes system but this time with a right-hand side in L*1 (L) with

2
LY

(3.78) =t
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This determines the value of k1 and, consequently, of ko as well. This yields V(p* 0) €
LF1(LY) and
(3.79) V@ O)llm ey < CU@) %+ 0 @llprwy + [Tlloo V@ )Lk (2e))-
Combining this last inequality and (3.77), we get

V@ O)llm ey < CA+ 12U+ @*)) A¢l 222

(3.80) + (" + ")) V)ell 22y + Ip* 0" Apll 1212
+ (0" 2 @)ellL2(L2))-

This tells us that we can view (3.73) as a system of N heat equations with right-
hand sides in L*1(0,T; L*(Q2)). Then, using the representation of the solution of heat
systems in terms of the semigroup, we deduce that

t
(3.81) " ¥ (®)llwre o) < / (t =) 2B(s) | ey ds Vit € (0,T),
0

where B(s) = —(p*)' v — p*p' o + D(p* )y — V(p* 0). See [40] for more details.
Since k1 > 2, from Young'’s inequality we see that ||p* [|y1.¢q) € L>(0,T) and

(3.82) 0" ¥l o qwey < (1 = k4 /2) VR T=V2HUYR B ey ey

Hence, from (3.80), we obtain the estimate

(3.83)
D" || oo iy < C T2 8 (17112 (| (0" + (7)) Al r2(re)
+ [[((p" + (")) )il L2 L2y + Ip" 0" Al 2y + (0" 0" @)ell2(22))

and, consequently, with a proper choice of ¢, we have

(3.84)
D" DY Gl L2 (ney < 1Ip° (DY)l oo 20y 1Tell 2oy < C NTell 2oy TH2F5 (1 + 7112

(17" + 7)) Dbl ey + 1@ + 7)) ©)ellzaeey
+lp* 2 Agllzzwa) + 16" P @)ellzaen ).

Finally, we put (3.84) together with (3.72) to obtain the desired local estimate of

(pti
J[ ek e
04%(0,T)
< (L4 [718) 172 2oy AT (N2 + D) (Ip el 220,
(3.85) o VelZaraion) + 1P @ll72r200)) + TR (| p” ll72(r2)

+ H(P*)/P/@H%z(m) +[lp* ¥’ <Pt||2L2(L2) +p™p’ A90H%2(L2)
" ellTe ey + 1) WellTaqrey + 1) 72 e

)" Bl aqze) + 1P AV ey + 107) Avlla(2)) ) -
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3.2.3. Conclusion. In this subsection we will end the proof of Lemma 3.1. We
will first see that the global integrals in (3.85) can be absorbed by the terms in
I(s,\; ), and then we will combine the local estimates to end the proof.

Notice that the next bounds hold for the weight functions:

(3.86) PP+ |(p*)'pl < CT s 34N tem 5712,
(3.87) (") D' + |(p")"p| + |p*p"| < CT? s/ AN 48" (y*)3/4,

Combining this and (3.85), we get

/ / P2 |or|? e dt
O4><(0,T)

=12
< (L 1718 G172 oy 1) (/\12(1 +T)(Ip¢llt2(2(04))

(3.88) 10" ellT2 200y + 1P Vel i2r2(o1)

+ 53278 // e™ 20" (v*)3 |2 da dt
Q
+S_1)\_8 //Q 6—285*,,)/\—1(“015‘2 + ‘Aw|2) dl‘dt)

for s > C(T* + T%).
Taking now A > C(1+ [|Flloc + [[Gell72 (o) + eCTII%), we obtain

. 4 X

o' el 22200y + 1P VOl T2 (1200,y) + € 1(5 A5 0).-

Let us finally combine (3.89), (3.32), (3.34), and (3.59). This yields

500 I(5, % ¢) < C X+ T) (I Pl3a 20,y + I P13 (22000))

+lIp VelRawaon )
for s > C(T* +T%) and A > C(1+ [[§llo + [T l122 (o) + €T 1),

It remains only to absorb the last norm in (3.90). This can be achieved using
localization arguments. Indeed, we have

(3.91)

// Ip|? |V|? do dt < C(sAQO 1+7) // > |p|* 7 |o|? da dt
01 x(0,T) Ox(0,T)

es N1+ T)_l// e 3057 A da dt
Ox(0,T)

for a constant & = (2, ©) > 0 small enough.
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In conclusion, we get from (3.90)

(3.92) I(s,\;0) < C N1 +T?) / e 8saF6sa” 2161512 1o it
Ox(0,T)
for s > C(T* +T%) and A > C(1 + |[§]lee + HytH%Q(L(,) + eCTIFI%) | which is exactly
(3.13).
3.3. Some additional comments. In this subsection, we will indicate several
recent results. The first two concern the controllability of the three-dimensional Stokes

and Navier—Stokes systems with two scalar controls. The third one is related to the
null controllability of the Stokes system with slip boundary conditions.

3.3.1. Three-dimensional Stokes and Navier—Stokes systems and two
scalar controls. Let us consider system (3.7) with N = 3. What we would like
to do now is to control acting over a (small) part of  just in two directions. More
precisely, if we denote the control by v = (v1,v2,v3), we intend to drive the system
(3.7) to zero at time t = T with the restriction

(3.93) vp=0 or wvy=0 or wvw3=0.

In the context of approximate controllability, this question was considered (and
solved) in [49] for cylindrical domains €.
We will have to impose an additional restriction on the control domain O, namely,

(3.94) Jz¥ € 9Q, Je > 0 such that O N IN D B(z";¢) N IN.

The following result holds.

THEOREM 3.6. Let T be an arbitrary positive time. Let (3.9) and (3.94) be
fulfilled. Then, for every y° € H, there exists a two-dimensional L? control v such
that the solution to (3.7) satisfies

(3.95) y(T)=0 in Q.
Let us indicate briefly the idea of the proof. It is not restrictive to assume that
B(x%e)nQcO
and, for instance,
n3(z) #0 Vo € B(2%e)NoQ.

In view of the general arguments proved in section 1, the key point is to get a
Carleman inequality of the form

(3.96) s‘l// p*|)? de dt < C// p* (|1 + p2l?) da dt
Q Ox(0,T)

for the solutions to (3.10).
Let us set Oy = B(z%¢) N Q. We start from (3.13), which must hold for some
C > 0. In Oy, we have

(3.97) ol 1) = /( O+ )1, 6, ) s,
l(x,t

where I(z,t) is an appropriate segment in Qg that starts from (z,t), is parallel to es,
and ends at a point on 9f2.



Downloaded 05/20/16 to 150.214.182.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

CARLEMAN, PARABOLICITY, AND CONTROLLABILITY 1443

Using (3.97) in (3.13), in view of Fubini’s formula, Holder’s inequality, and stan-
dard localization arguments, together with the particular definition of the set Op, one
can find a Carleman inequality with local terms of |1|? and |¢2|? on the right-hand
side. This and the dissipativity of system (3.10) imply, in a usual way, an observability
inequality for the associated solutions with only these two terms on the right-hand
side, which yields the result stated in Theorem 3.6.

As a consequence of Theorem 3.6, following again the arguments developed in [37]
and [24], one can deduce the local exact controllability to the trajectories of the
Navier—Stokes system with two scalar controls:

THEOREM 3.7. Let (§,D) be a solution of (3.15) verifying (3.9) and 5(0) € E =
H N LY(Q)3. There exists € > 0 such that, for each y° € E satisfying

ly° = 7(0)]|a <e,

one can find a two-dimensional L? control v and an associated solution (y,p) to (3.14)
for which we have

(3.98) y(T) =5y(T) in Q.

3.3.2. Stokes systems with slip boundary conditions. Let us introduce the
following system:

yr — Ay + Vp =vlp in Q,

V-y=0 in Q,
(3.99) B

y-n=0, ((Dy) M)+ (Alz,t)y)iy =0 on I,

y(0) =y° in Q.

Here, we have used the notation a;y to denote the tangential component of any vector
a€RN:

(3.100) arg =a— (a-n)n.
We will impose the following assumptions on A:

A e HO=O2(0,7; HY/?(90)N M),

101
(3100 A€ 00,5 TN () V)

where 0 < § < 1/2 arbitrarily close to 1/2 and § < §' < 1/2. Then we have the next
result from [35].

THEOREM 3.8. Let us assume that A is a uniformly elliptic matriz verifying
A€ L®(Z)N*N and (3.101). Then, for each y° € H, there exists v € L>(Ox (0,T))N
such that the solution to (3.99) satisfies

(3.102) y(T)=0 in Q.

Remark 10. It would be interesting to know if this result still holds, for general
uniformly elliptic A € L>°(X)V*N  without the hypotheses (3.101). However, this
seems to be a difficult question.

For similar systems for the Stokes or Navier—Stokes equations involving nonlinear
slip boundary conditions, the situation is much more complicated. See [35] for more
details.



Downloaded 05/20/16 to 150.214.182.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

1444

[16]

(17]
18]
[19]
[20]

(21]

[22]

23]

[24]

[25]

ENRIQUE FERNANDEZ-CARA AND SERGIO GUERRERO

REFERENCES

V. M. ALEKSEEV, V. M. TIKHOMIROV, AND S. V. FOMIN, Optimal Control, Contemp. Soviet
Math., Consultants Bureau, New York, 1987.

S. ANITA AND V. BARBU, Null controllability of nonlinear convective heat equations, ESAIM
Control Optim. Calc. Var., 5 (2000), pp. 157-173.

J.-P. AUBIN, L’analyse non linéaire et ses motivations économiques, Masson, Paris, 1984.

S. A. AVDONIN AND S. A. IvaNov, Families of Exponentials. The Method of Moments in
Controllability Problems for Distributed Parameter Systems, Cambridge University Press,
Cambridge, UK, 1995.

V. BARBU, Ezact controllability of the superlinear heat equation, Appl. Math. Optim., 42 (2000),
pp. 73-89.

V. BARBU, Controllability of parabolic and Navier-Stokes equations, Sci. Math. Jpn., 56 (2002),
pp. 143-211.

V. BARBU AND M. IANNELLI, Controllability of the heat equation with memory, Differential
Integral Equations, 13 (2003), pp. 1393-1412.

V. BARBU AND G. TESSITORE, Null controllability of stochastic heat equations with a multi-
plicative noise, Appl. Math. Optim., 47 (2000), pp. 97-120.

O. BODART, M. GONZALEZ-BURGOS, AND R. PEREZ-GARCIA, Insensitizing controls for a semi-
linear heat equation with a superlinear nonlinearity, C. R. Math. Acad. Sci. Paris, 335
(2002), pp. 677-682.

J.-M. CORON, On the controllability of the 2-D incompressible Navier-Stokes equations with the
Navier slip boundary conditions, ESAIM Control Optim. Calc. Var., 1 (1996), pp. 35-75.

J.-M. CorON AND A. V. FURSIKOV, Global exact controllability of the 2-D Navier-Stokes equa-
tions on a manifold without boundary, Russian J. Math. Phys., 4 (1996), pp. 1-19.

L. DE TERESA, Insensitizing controls for a semilinear heat equation, Comm. Partial Differential
Equations, 25 (2000), pp. 39-72.

A. DouBovA AND E. FERNANDEZ-CARA, Some control results for simplified one-dimensional
models of fluid-solid interaction, Math. Models Methods Appl. Sci., 15 (2005), pp. 783-824.

A. DouBova, E. FERNANDEZ-CARA, AND M. GONZALEzZ-BURGOS, Controllability results for
linear viscoelastic fluids of the Mazwell and Jeffreys kinds, C. R. Acad. Sci. Paris, 331
(2000), pp. 537-542.

A. DouBovA, E. FERNANDEZ-CARA, AND M. GONZALEZ-BURGOS, On the controllability of the
heat equation with nonlinear boundary Fourier conditions, J. Differential Equations, 196
(2004), pp. 385-417.

A. DouBovA, E. FERNANDEZ-CARA, M. GONZALEZ-BURGOS, AND E. ZUAzZUA, On the control-
lability of parabolic systems with a nonlinear term involving the state and the gradient,
SIAM J. Control Optim., 41 (2002), pp. 798-819.

Yu. V. EGOROV, Some problems in the theory of optimal control, Z. Vycisl. Mat. i Mat. Fiz.,
3 (1963), pp. 887-904 (in Russian).

C. FABRE, Uniqueness results for Stokes equations and their consequences in linear and non-
linear control problems, ESAIM Control Optim. Calc. Var., 1 (1995/96), pp. 267-302.

C. FABRE, J.-P. PUEL, AND E. ZUAzUA, Approzimate controllability of the semilinear heat
equation, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), pp. 31-61.

E. FERNANDEZ-CARA, Null controllability of the semilinear heat equation, ESAIM Control
Optim. Calc. Var., 2 (1997), pp. 87-103.

E. FERNANDEZ-CARA, M. GONZALEZ-BURGOS, S. GUERRERO, AND J.-P. PUEL, Null control-
lability of the heat equation with Fourier Fourier boundary conditions: The linear case,
ESAIM Control Optim. Calc. Var., 12 (2006), pp. 442-465.

E. FERNANDEZ-CARA, M. GONZALEZ-BURGOS, S. GUERRERO, AND J.-P. PUEL, Ezact control-
lability to the trajectories of the heat equation with Fourier boundary conditions: The
semilinear case, ESAIM Control Optim. Calc. Var., 12 (2006), pp. 466-483.

E. FERNANDEZ-CARA AND S. GUERRERO, Global Carleman estimates for solutions of
parabolic systems defined by transposition and some applications to controllability, AMRX
Appl. Math. Res. Express, Volume 2006 (2006), article 75090; available online from
http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AMRX /2006 /75090.

E. FERNANDEZ-CARA, S. GUERRERO, O. YU. IMANUVILOV, AND J.-P. PUEL, Local ezact con-
trollability to the trajectories of the Nawvier-Stokes equations, J. Math. Pures Appl., 83
(2004), pp. 1501-1542.

E. FERNANDEZ-CARA, S. GUERRERO, O. YU. IMANUVILOV, AND J.-P. PUEL, Some controllability
results for the N-dimensional Navier—Stokes and Boussinesq systems with N — 1 scalar
controls, STAM J. Control Optim., 45 (2006), pp. 146-173.



Downloaded 05/20/16 to 150.214.182.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

41]
[42]

[43]

© © O O

G.

G.

CARLEMAN, PARABOLICITY, AND CONTROLLABILITY 1445

. FERNANDEZ-CARA AND L. DE TERESA, Null controllability of a cascade system of parabolic-

hyperbolic equations, Discrete Contin. Dyn. Syst., 11 (2004), pp. 699-714.

. FERNANDEZ-CARA AND E. ZUAzUA, The cost of approzimate controllability for heat equa-

tions: The linear case, Adv. Differential Equations, 5 (2000), pp. 465-514.

. FERNANDEZ-CARA AND E. ZUAzUA, Null and approzimate controllability for weakly blow-

ing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000),
pp. 583-616.

. V. FURsikov AND O. YUu. IMANUVILOV, Local exact controllability of the Navier-Stokes

equations, C. R. Acad. Sci. Paris Sér. I Math., 323 (1996), pp. 275-280.

. V. FUrsikov AND O. Yu. IMANUVILOV, Controllability of Evolution Equations, Lecture Note

Series 34, Research Institute of Mathematics, Seoul National University, Seoul, 1996.

. V. Fursikov AND O. YUu. IMANUVILOV, Ezact controllability of the Navier-Stokes and

Boussinesq equations, Uspekhi Mat. Nauk, 54 (1999), pp. 93-146 (in Russian); English
translation in Russian Math. Surveys, 54 (1999), pp. 565-618.

. GIGA AND H. SOHR, Abstract LP estimates for the Cauchy problem with applications to the

Navier-Stokes equations in exterior domains, J. Funct. Anal., 102 (1991), pp. 72-94.

. GLAss, An addendum to a J. M. Coron theorem concerning the controllability of the Euler

system for 2D incompressible inviscid fluids, J. Math. Pures Appl. (9), 80 (2001), pp. 845—
877.

. GLOWINSKI AND J.-L. LIONS, Ezact and approximate controllability for distributed parameter

systems, in Acta Numerica, Cambridge University Press, Cambridge, UK, 1995, pp. 159—
333.

. GUERRERO, Local exact controllability to the trajectories of the Navier-Stokes system with

nonlinear Navier-slip boundary conditions, ESAIM Control Optim. Calc. Var., 12 (2006),
pp. 484-544.

. Yu. ImaNuviLov, Controllability of parabolic equations, Sb. Math., 186 (1995), pp. 109-132

(in Russian).

. YUu. IMANUVILOV, Remarks on exact controllability for the Navier-Stokes equations, ESAIM

Control Optim. Calc. Var., 6 (2001), pp. 39-72.

. Yu. IMANUVILOV AND J.-P. PUEL, Global Carleman estimate for weak elliptic non homoge-

neous Dirichlet problem, Int. Math. Res. Not., 16 (2003), pp. 883-913.

. Yu. IMANUVILOV AND M. YAMAMOTO, Carleman estimate for a parabolic equation in a

Sobolev space of negative order and its applications, in Control of Nonlinear Distributed
Parameter Systems, Lecture Notes in Pure and Appl. Math. 218, Marcel Dekker, New
York, 2001, pp. 113-137.

. A. LADYZHENSKAJA, V. A. SOLONNIKOV, AND N. N. URAL'CEVA, Linear and Quasilinear

Equations of Parabolic Type, translated from the Russian by S. Smith, Translations of
Mathematical Monographs 23, AMS, Providence, RI, 1967.

. LEBEAU AND L. ROBBIANO, Contréle exact de l’équation de la chaleur, Comm. Partial

Differential Equations, 20 (1995), pp. 335-356.

LEBEAU AND E. ZUAZUA, Null-controllability of a system of linear thermoelasticity, Arch.
Rational Mech. Anal., 141 (1998), pp. 297-329.

LEBEAU AND E. ZUAZUA, Decay rates for the three-dimensional linear system of thermoe-
lasticity, Arch. Rational Mech. Anal., 148 (1999), pp. 179-231.

[44] J.-L. LIONS, Ezact controllability, stabilizability and perturbations for distributed systems,

SIAM Rev., 30 (1988), pp. 1-68.

[45] J.-L. Lions, Contrélabilité Exacte, Perturbations et Stabilisation de Systémes Distribués, Tome

1, Rech. Math. Appl. 8, Masson, Paris, 1988.

[46] J.-L. Lions, Contrélabilité Exacte, Perturbations et Stabilisation de Systémes Distribués, Tome

2, Rech. Math. Appl. 9, Masson, Paris, 1988.

[47] J.-L. LIONS, Quelques notions dans l’analyse et le contréle de systémes a données incomplétes,

in Proceedings of the 11th Congress on Differential Equations and Applications/First
Congress on Applied Mathematics, University of Mélaga, Mélaga, 1989, pp. 43-54.

(48] J.-L. LIONS, Are there connections between turbulence and controllability?, in Analysis and

Optimization of Systems, A. Bensoussan and J.-L. Lions, eds., Lecture Notes Control and
Inform. Sci. 144, Springer-Verlag, Berlin, 1990.

[49] J.-L. LiOoNS AND E. ZUAZUA, A generic uniqueness result for the Stokes system and its control

theoretical consequences, in Partial Differential Equations and Applications, P. Marcellini,
G. Talenti, and E. Visentini, eds., Lecture Notes in Pure and Appl. Math. 177, Marcel
Dekker, New York, 1996, pp. 221-235.

[50] J.-L. LioNs AND E. ZUAzUA, Ezact boundary controllability of Galerkin’s approzimations of

Navier-Stokes equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), pp. 605-621.



Downloaded 05/20/16 to 150.214.182.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

1446 ENRIQUE FERNANDEZ-CARA AND SERGIO GUERRERO

[61] J.-P. PUEL, Controllability of Partial Differential Equations, Lectures in the Universidade
Federal do Rio de Janeiro, Brazil, 2002.

[52] D. L. RUSSELL, A unified boundary controllability theory for hyperbolic and parabolic partial
differential equations, Int. Math. Res. Not., 52 (1973), pp. 189-221.

[53] D. L. RusSELL, Controllability and stabilizability theory for linear partial differential equations:
Recent progress and open questions, STAM Rev., 20 (1978), pp. 639-739.

[54] TH. I. SEIDMAN, On uniform null-controllability and blow-up estimates, in Control Theory of
Partial Differential Equations, Lect. Notes Pure Appl. Math. 242, Chapman & Hall/CRC,
Boca Raton, FL, 2005, pp. 213—-227.

[55] R. TEMAM, Navier-Stokes Equations. Theory and Numerical Analysis, 2nd ed., North-Holland,
Amsterdam, 1977.

[56] E. ZUAZUA, Ezact boundary controllability for the semilinear wave equation, in Nonlinear Par-
tial Differential Equations and Their Applications, Vol. 10, Pitman Res. Notes Math. Ser.
220, Longman, Harlow, UK, 1991, pp. 357-391.

[67] E. Zuazua, Controllability of the linear system of thermoelasticity, J. Math. Pures Appl., 74
(1995), 303-346.



