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CONTROLLABILITY OF 2D EULER AND NAVIER-STOKES

EQUATIONS BY DEGENERATE FORCING

ANDREY A. AGRACHEV1 AND ANDREY V. SARYCHEV2

Abstract. We study controllability issues for the 2D Euler and Navier-
Stokes (NS) systems under periodic boundary conditions. These systems
describe motion of homogeneous ideal or viscous incompressible �uid on
a two-dimensional torus T2. We assume the system to be controlled by
a degenerate forcing applied to �xed number of modes.

In our previous work [3, 5, 4] we studied global controllability by
means of degenerate forcing for Navier-Stokes (NS) systems with non-
vanishing viscosity (ν > 0). Methods of di�erential geometric/Lie alge-
braic control theory have been used for that study. In [3] criteria for
global controllability of �nite-dimensional Galerkin approximations of
2D and 3D NS systems have been established. It is almost immediate
to see that these criteria are also valid for the Galerkin approximations
of the Euler systems. In [5, 4] we established a much more intricate suf-
�cient criteria for global controllability in �nite-dimensional observed
component and for L2-approximate controllability for 2D NS system.
The justi�cation of these criteria was based on a Lyapunov-Schmidt
reduction to a �nite-dimensional system. Possibility of such a reduc-
tion rested upon the dissipativity of NS system, and hence the previous
approach can not be adapted for Euler system.

In the present contribution we improve and extend the controllability
results in several aspects: 1) we obtain a stronger su�cient condition for
controllability of 2D NS system in an observed component and for L2-
approximate controllability; 2) we prove that these criteria are valid for
the case of ideal incompressible �uid (ν = 0); 3) we study solid control-
lability in projection on any �nite-dimensional subspace and establish a
su�cient criterion for such controllability.

Keywords: incompressible �uid, 2D Euler system, 2D Navier-Stokes

system, controllability

AMS Subject Classi�cation: 35Q30, 93C20, 93B05, 93B29

1. Introduction

The present paper extends our work started in [3, 5, 4] on studying con-
trollability of 2- and 3- dimensional Navier-Stokes equations (2D and 3D NS
systems) under periodic boundary conditions. The characteristic feature of
our problem setting is a choice of control functions; we are going to control
the 2D NS/Euler system by means of degenerate forcing. The corresponding
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equations are

∂u/∂t+ (u · ∇)u+∇p = ν∆u+ F (t, x),(1)

∇ · u = 0.(2)

The words "degenerate forcing" mean that F (t, x) is a "low-order" trigono-
metric polynomial with respect to x, i.e. a sum of a "small number" of
harmonics:

F (t, x) =
∑
k∈K1

vk(t)eik·x, K1 is �nite.

The word "control" means that the components vk(t), t ∈ [0, T ] of the forcing
can be chosen freely among measurable essentially bounded functions. In fact
to achieve controllability piecewise-constant controls su�ce.

In [3, 5, 4] we derived su�cient controllability criteria for Galerkin approx-
imations of 2D and 3D NS systems. For the 2D NS system we established
su�cient criteria for so called, controllability in �nite-dimensional observed
component and for L2-approximate controllability. The corresponding de�-
nitions can be found in the Section 3.

Now we consider both cases of viscous (ν > 0) and ideal (ν = 0) incom-
pressible �uid simultaneously. To establish a possibility to propagate the
action of small dimensional control to (a �nite number of) higher modes we
use the technique of Lie extensions developed in the scope of geometric con-
trol theory (see [2, 16]). For �nite-dimensional Galerkin approximations of
2D and 3D Euler systems (ν = 0) the controllability criteria turn out to be
the same as for 2D and 3D NS systems (ν > 0) (see [3, 5, 4]). This is due to
the fact that these controllability criteria are of "purely nonlinear" nature;
they are completely determined by the nonlinear term of the Euler system.

Tools of Geometric Control Theory are not yet adapted too much to
in�nite-dimensional case. For dealing with ini�nite-dimensional dynamics
we used in [3, 5, 4] a Lyapunov-Schmidt reduction to a �nite-dimensional
system. The possibility of such a reduction rested upon dissipativity of the
NS system, which is not anymore present when one deals with Euler system.

In the present paper we abandon the Lyapunov-Schmidt reduction and
instead re�ne the tools of geometric control in order to deal with viscous
and nonviscous case at the same time. This re�nement also allow us to im-
prove the su�cient criterion of controllability in observed component for 2D
NS/Euler system. The criterion, formulated in terms of so-called 'saturating
property' of the set of controlled forcing modes, is stronger then the one
established in [3, 5, 4]. Analysis of the saturation property in [15] showed
that a generic symmetric set of 4 controlled modes su�ces for achieving
controllability.

For a saturating set we manage to prove L2-approximate controllability for
2D NS/Euler system. We also study controllability in �nite-dimensional pro-
jections. The latter property means that the attainable set of 2D NS/Euler
system is projected surjectively onto any �nite-dimensional subspace of H2.
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There was an extensive study of controllability of the Navier-Stokes and
Euler equations in particular by means of boundary control. There are var-
ious results on exact local controllability of 2D and 3D Navier-Stokes equa-
tions obtained by A.Fursikov, O.Imanuilov, global exact controllability for
2D Euler equation obtained by J.-M. Coron, global exact controllability for
2D Navier-Stokes equation by A.Fursikov and J.-M. Coron. The readers may
turn to the book [10] and to the surveys [11] and [8] for further references.

Our problem setting di�ers from the above results by the class of degen-
erate distributed controls which is involved. In closer relation to our work
is a publication of M.Romito ([21]) who provided a criterion for control-
lability of Galerkin approximations of 3D NS systems. J.C.Mattingly and
E.Pardoux adapted ([19])) the controllability result from [5] for studying
properties of the solutions of stochastically forced 2D NS systems. M.Hairer
and J.C.Mattingly have applied ([15]) the controllability results to studying
ergodicity of 2D Navier-Stokes equation under degenerate stochastic forcing.

The structure of our paper is as follows. Section 2 contains a necessary
minimum of standard preliminary material on 2D Euler and NS systems.
The problem setting in the Section 3 is succeeded by the formulation of
the main results in the Section 4. These results include su�cient criteria
for controllability in observed component, for solid controllability in �nite-
dimensional projection, and for L2-approximate controllability for both 2D
NS and 2D Euler systems. The controllability criteria rest upon so-called
'saturating property' - a arithmetic property of the set K1 ⊂ Z2 of controlled
modes. In Subsection 4.1 we provide necessary and su�cient conditions for
this property to hold.

The rest of the paper is devoted to the proofs of these results. Among
the tools involved are some results on equiboundedness and continuous de-
pendence of solutions of 2D NS/Euler systems on relaxed forcings. Being
interesting for their own sake these results are formulated in Section 5 and
are proved in Appendix. In Section 6 we accomplish the proof of (solid)
controllability in observed component. The construction, introduced in this
proof, is crucial for the proof of controllability in a �nite-dimensional pro-
jection accomplished in Section 7. Proof of L2-approximate controllability
is similar; the readers can either complete it by themselves or consult [5].

The authors are grateful to the anonymous referee, whose critical remarks
were helpful for improving the presentation.

2. Preliminaries on 2D NS/Euler System: vorticity, spectral
method, Galerkin approximations

We consider the 2D NS/Euler system (1)-(2). The boundary conditions
are assumed to be periodic, i.e. one may assume the velocity �eld u to be
de�ned on the 2-dimensional torus T2. Besides we assume

(3)

∫
T2

udx = 0.
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Let us introduce the vorticity w = ∇⊥ · u = ∂u2/∂x1 − ∂u1/∂x2 of u.
Applying the operator ∇⊥ to the equation (1) we arrive to the equation:

(4) ∂w/∂t+ (u · ∇)w − ν∆w = v(t, x),

where v(t, x) = ∇⊥ · F (t, x).
Notice that: i) ∇⊥ · ∇p = 0, ii) ∇⊥ and ∆ commute as linear di�erential

operators in x with constant coe�cients;

iii) ∇⊥ · (u · ∇)u = (u · ∇)(∇⊥ · u) + (∇⊥ · u)(∇ · u) = (u · ∇)w,

for all u satisfying (2).
It is known that u, which satis�es the relations (2) and (3), can be recov-

ered in a unique way from w. From now on we will deal with the equation
(4).

A natural and standard (see [6, 7]) way to view the NS systems is to
represent them as evolution equations in Hilbert spaces.

Consider Sobolev spaces H`(Ts) with the scalar product de�ned as

〈u, u′〉` =
∑
α≤`

∫
Ts

(∂αu/∂xα)(∂αu′/∂xα)dx;

the norm ‖ · ‖` is de�ned by virtue of this scalar product. Denote by H`

the closures of {u ∈ C∞(Ts),∇ · u = 0} in the norms ‖ · ‖` in the respective
spaces H`(Ts), ` ≥ 0. The norms in H` will be denoted again by ‖·‖`. It will
be convenient for us to rede�ne the norm of H1 by putting ‖u‖2

1 = 〈−∆u, u〉,
and the norm of H2 by putting ‖u‖2

2 = 〈−∆u,−∆u〉.
Results on global existence and uniqueness of weak and classical solutions

of NS systems in bounded domains can be found in [7, 6, 18]. Similar results
for the inviscid (Euler) case - W.Wolibner's existence and uniqueness theorem
- are presented in [17]. Formulation in [9] allows for asserting global existence
and uniqueness of trajectories t 7→ ut (respectively t 7→ wt for the vorticity)
of the 2D Euler systems in any Sobolev space Hs with s > 2 (respectively
with s > 1 for the vorticity), provided that the initial data belongs to these
spaces.

Let us consider now the basis of eigenfunctions {eik·x} of the Laplacian
on T2 and take the Fourier expansion of the vorticity w(t, x) =

∑
k qk(t)e

ik·x

and control v(t, x) =
∑

k vk(t)eik·x; here k ∈ Z2. As far as w and f are
real-valued, we have q̄n = q−n, v̄n = v−n. We assume v0 = 0; by (3) q0 = 0.

Evidently ∂w/∂t =
∑

k q̇k(t)e
ik·x. To compute (u · ∇)w we write the

equalities

∇⊥ · u = w, ∇ · u = 0 ⇔ −∂2u1 + ∂1u2 = w, ∂1u1 + ∂2u2 = 0.

From these latter we conclude by a standard reasoning that

u1 =
∑

k∈Z2\0

qk(t)(ik2/|k|2)eik·x, u2 = −
∑

k∈Z2\0

qk(t)(ik1/|k|2)eik·x,
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and

(5) (u · ∇)w =
∑

k∈Z2\0

(
∑

m+n=k

(m ∧ n)|m|−2qm(t)qn(t))eik·x,

where m ∧ n = m1n2 −m2n1 is the external product of m = (m1,m2), n =
(n1, n2).

Now the 2D NS/Euler system can be written (cf. [12]) as an (in�nite-
dimensional) system of ODE for qk:

(6) q̇k =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk + vk, k,m, n ∈ Z2.

Observe that the product qmqn enters the sum
∑

m+n=k(m∧n)|m|−2qmqn
twice with (a priori) di�erent coe�cients. Therefore this sum can be rear-
ranged

(7)
∑

m+n=k

(m ∧ n)|m|−2qmqn =
∑

m+n=k,|m|<|n|

(m ∧ n)(|m|−2 − |n|−2)qmqn.

From the last representation we conclude that qmqn does not appear in the
equations whenever |m| = |n|.

Consider any �nite subset G ⊂ Z2 and introduce the Galerkin G-approxi-
mation of the system (4) or of the system (6) by projecting this system onto
the linear space spanned by the harmonics eik·x with k ∈ G. The result is a
�nite-dimensional system of ODE or a control system

(8) q̇k =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk + vk, k,m, n ∈ G.

3. 2D NS/Euler system controlled by degenerate forcing.
Problem setting

We study the case where the 2D NS/Euler system is forced by a trigono-
metric polynomial: v(t, x) =

∑
k∈K1 vke

ik·x, where K1 is a �nite set. Such

forcing is called degenerate. As we said vk(·) with k ∈ K1 are controls at our
disposal; they are measurable essentially bounded functions and can be cho-
sen arbitrary besides standard agreement of complex conjugation: v−k = v̄k.
From now on we assume the set K1 of controlled modes to be symmetric:
k ∈ K1 ⇔ −k ∈ K1.

Let us introduce a �nite symmetric set of observed modes indexed by
k ∈ Kobs ⊂ Z2. The observed modes are reunited in so-called observed
component.

We assume Kobs ⊇ K1. As we will see, nontrivial controllability issues
arise only if K1 is a proper subset of Kobs. We identify the space of observed
modes with RN and denote by Πobs the operator of projection of solutions
onto the space of observed modes.
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We will represent the controlled 2D NS/Euler equation in the following
splitted (controlled -observed -unobserved components) form:

q̇k =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk + vk, k ∈ K1,(9)

q̇k =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk, k ∈ Kobs \ K1,(10)

Q̇ = ν∆Q+B(q,Q).(11)

In the latter equation B(q,Q) stays for the projection of the nonlinear
term of the Euler system onto the space of unobserved modes.

Galerkin Kobs-approximation of the 2D NS/Euler system consists of the
equations (9)-(10) under an additional condition m,n ∈ Kobs for the sum-
mation indices.

De�nition 3.1. Galerkin Kobs-approximation of 2D NS/Euler systems is
time-T globally controllable if for any two points q̃, q̂ in RN , there exists a
control which steers in time T this Galerkin approximation from q̃ to q̂. �

De�nition 3.2. (controllability in observed component) 2D NS/Euler sys-
tem is time-T globally controllable in observed N -dimensional component if
for any ϕ̃ ∈ H2 and any q̂ ∈ RN there exists a control which steers the system
in time T from ϕ̃ to some ϕ̂ ∈ (Πobs)−1(q̂). �

In other words the 2D NS/Euler system is globally controllable in observed
component if its time-T attainable set (from each point) is projected by
Πobs onto the whole coordinate subspace spanned by the observed modes.
Notice that the observed dynamics (9)-(10) is a�ected by in�nite-dimensional
dynamics (11).

We generalize the previous de�nition.

De�nition 3.3. (controllability in �nite-dimensional projection) Let L be a
�nite-dimensional subspace of H2(T2) and ΠL be L2-orthogonal projection of
H2(T2) onto L. The 2D NS/Euler system is time-T globally controllable in
projection on L if for any ϕ̃ ∈ H2(T2) and for any q̂ ∈ RN there exists a
control which steers the system in time T from ϕ̃ to some ϕ̂ ∈ (ΠL)−1(q̂). �

Remark 3.1. Controllability in observed component amounts to controlla-
bility in �nite-dimensional projection on a coordinate subspace L. �.

De�nition 3.4. (L2-approximate controllability) The 2D NS/Euler system
is time-T L2-approximately controllable, if for any two points ϕ̃, ϕ̂ ∈ H2 and
for any ε > 0 there exists a control which steers the system in time T from
ϕ̃ to the ε-neighborhood of ϕ̂ in L2-norm. �

Let us introduce some useful terminology.

De�nition 3.5. Fix initial condition ϕ̃ ∈ H2(T2) for trajectories of the
controlled 2D NS/Euler system.
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The correspondence between the controlled forcing v(·) ∈ L∞
(
[0, T ]; Rd

)
and the corresponding trajectory (solution) wt of the system is established by
forcing/trajectory map (F/T -map).

The correspondence between the controlled forcing v(·) and the observed
component q(t) = Πobswt (an RN -valued function) of the corresponding tra-
jectory is established by forcing/observation map (F/O-map).

If NS/Euler system is considered on an interval [0, T ] (T < +∞), then
the map F/T T : v(·) 7→ wT is called end-point map; the map Πobs ◦ F/T T

is called end-point component map, the composition ΠL ◦ F/T T is called
L-projected end-point map. �

Remark 3.2. In the terminology of control theory the �rst two maps would
be called input/trajectory and input/output maps correspondingly. �

Remark 3.3. Evidently time-T controllability of the NS/Euler system in
observed component or in �nite-dimensional projection is the same as sur-
jectiveness of the corresponding end-point maps. �

Invoking these maps we will introduce a stronger notion of solid control-
lability.

De�nition 3.6. Let Φ : M1 7→M2 be a continuous map between two metric
spaces, and S ⊆ M2 be any subset. We say that Φ covers S solidly, if
S ⊆ Φ(M1) and this inclusion is stable with respect to C0-small perturbations
of Φ, i.e. for some C0-neighborhood Ω of Φ and for each map Ψ ∈ Ω, there
holds: S ⊆ Ψ(M1). �

In what follows M2 will be �nite-dimensional vector space.

De�nition 3.7. (solid controllability in �nite-dimensional projection) The
2D NS/Euler system is time-T solidly globally controllable in projection on
�nite-dimensional subspace L ⊂ H2, if for any bounded set S in L there
exists a set of controls BS such that

(
ΠL ◦ F/T T

)
(BS) covers S solidly. �

3.1. Problem setting. We address the following questions.
Question 1. Under what conditions the 2D NS/Euler system (9)-(10)-

(11) is globally controllable in observed component? �
Question 2. Under what conditions the 2D NS/Euler system (9)-(10)-

(11) is solidly controllable in any �nite-dimensional projection? �
Question 3. Under what conditions the 2D NS/Euler system is L2-

approximately controllable? �
In [5, 4] we have answered the Questions 1,3 for the 2D NS system. In

the present contribution we improve the previous results (provide su�cient
controllability conditions under weaker hypothesi), extend them onto the
case of ideal �uid (2D Euler equation) and answer the Question 2 for 2D NS
and Euler systems.
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4. Main results for 2D NS/Euler system

Let K1 ⊂ Z2 \ {0} be a symmetric �nite set of controlled forcing modes.
De�ne the sequence of sets Kj ⊂ Z2 iteratively as:

Kj = Kj−1
⋃

(12)

{m+ n| m,n ∈ Kj−1
∧
‖m‖ 6= ‖n‖

∧
m ∧ n 6= 0}.

Theorem 4.1. (controllability in observed component) Let K1 be the set
of controlled forcing modes, Kobs a symmetric �nite set of observed modes.
De�ne iteratively by (12) the sequence of sets Kj , j = 2, . . . , and assume that
KM ⊇ Kobs for some M ≥ 1. Then for any T > 0 the 2D NS/Euler system
(9)-(10)-(11) is time-T globally controllable in the observed component. �

Remark 4.1. The present su�cient criterion di�ers from the one, we ob-
tained in [5, 4], by the presence of the 'term' Kj−1 in the right-hand side of
the formula (12). With the new augmented Kj's and with new 'saturation
property' (see De�nition 4.2) controllability can be established under weaker
hypothesi. �

Theorem 4.1 characterizes controllability in projection on a �nite-dimen-
sional coordinate subspaces. A natural question is whether the system is
controllable in projection on any �nite-dimensional subspace (a relevance
of this question for regularity of solutions for stochastically forced 2D NS
system has been cleared to us by J.C.Mattingly and E.Pardoux).

De�nition 4.2. A �nite set K1 ⊂ Z2 \ {0} of forcing modes is called satu-
rating if

⋃∞
j=1Kj = Z2 \ {0}, where Kj are de�ned by (12). �

Theorem 4.3. (controllability in �nite-dimensional projection) Let K1 be a
saturating set of controlled forcing modes and L be any �nite-dimensional
subspace of H2. Then for any T > 0 the 2D NS/Euler system (9)-(10)-(11)
is time-T solidly controllable in any �nite-dimensional projection. �

Another controllability result holds under similar assumptions.

Theorem 4.4. (L2-approximate controllability) Consider the 2D NS/Euler
system controlled by degenerate forcing. Let K1 be a saturating set of con-
trolled forcing modes. Then for any T > 0 the system (9)-(10)-(11) is time-T
L2-approximately controllable. �

4.1. Saturating sets of forcing modes. As we see the saturating property
is crucial for controllability. In [15] the following characterization of this
property has been established.

Proposition 4.5 ([15]). Let K1 ⊂ Z2 be a symmetric �nite set, Kj be de�ned
by (12) for j = 2, . . ., and K∞ =

⋃∞
j=1Kj. The union K∞

⋃
{0} is an

additive subgroup of Z2, if and only if K1 ⊂ Z2 contains two vectors which
are not collinear and have di�erent lengths. �
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Remark 4.2. As it is well known any additive subgroup of Zr is a lattice,
i.e. a set of integer linear combinations

∑s
j=1 ajv

j of s (s ≤ r) linearly

independent generators v1, . . . , vs ∈ Zr (see, for example, [20] or [2]). �

Corollary 4.6 ([15]). If the additive subgroup, which appears in the Propo-
sition 4.5, coincides with Z2, then the set K1 is saturating. �

Before providing a short proof of the Proposition 4.5 we elaborate more
on the saturating property. The following elementary Lemma is involved.

Lemma 4.7. Let H be an additive subgroup, generated by a set {v1, . . . , vs} ⊂
Z2. Then H coincides with Z2 if and only if the greatest common divisor
(g.c.d.) of the numbers dij = vi ∧ vj , i, j ∈ {1, . . . , s} equals 1. �

As before x ∧ y = x1y2 − x2y1 stays for the external product of x, y ∈ Z2

and it is assumed that 0 is divisible by any integer.
Proof of the Lemma. (⇒) Let the g.c.d. of the numbers dij be µ. If

H = Z2, then the vectors x = (1, 0), y = (0, 1) can be represented as integer
linear combinations of v1, . . . , vs and therefore the external product x ∧ y is
an integer combination of dij . Hence 1 = x ∧ y is divisible by µ.

(⇐) Let the g.c.d. of the numbers dij equal 1. Then at least one of dij

does not vanish and the lattice (see Remark 4.2) H is 2-dimensional.
Take one of the pairs ξ, η of generators of H for which ξ∧η admits minimal

positive (integer) value ω. We claim that: i) ω = 1, and ii) H = Z2.
To conclude i) we reason as before. Indeed all vr are linear integer com-

binations of ξ and η and therefore all dij have to be divisible by ω. To
conclude ii) it is enough to observe that for each ζ ∈ Z2 the linear equation
Aξ +Bη = ζ possesses integer solution

A = (ζ ∧ η)/ω = (ζ ∧ η), B = (ξ ∧ ζ)/ω = (ξ ∧ ζ),
and hence ξ, η generate Z2 = H. �

Theorem 4.8. For a symmetric �nite set K1 = {v1, . . . , vs} ⊂ Z2 the fol-
lowing properties are equivalent:

i) K1 is saturating;
ii) the greatest common divisor of the numbers dij = vi ∧ vj , i, j ∈

{1, . . . , s} equals 1 and there exist vα, vβ ∈ K1, which are not collinear and
have di�erent lengths. �

This result is an immediate corollary of the Proposition 4.5 and the
Lemma 4.7. Just note that K∞

⋃
{0} is obviously contained in the addi-

tive group generated by K1.

Corollary 4.9. The set K1 = {(1, 0), (−1, 0), (1, 1), (−1,−1)} ⊂ Z2 is satu-
rating. �

This leads to

Corollary 4.10. Solid controllability in any �nite-dimensional projection
and L2-approximately controllability can be achieved by forcing 4 modes. �
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Now we turn to to the Proposition 4.5.
Proof of the Proposition 4.5. If any two vectors from K1 are either collinear

or have the same length, then K1=K2 = · · · = K∞ and therefore the set
K∞

⋃
{0} is �nite, i.e. fails to be an additive subgroup of Z2.

Assume now that m ∧ n 6= 0, |m| 6= |n|. Without lack of generality we
may assume: m · n ≥ 0, |n| > |m|.

By construction Kj and K∞ are symmetric, provided K1 is. Therefore it
su�ces to prove that

(13) j, k ∈ K∞
⋃
{0} ⇒ j + k ∈ K∞

⋃
{0}.

The case of either j = 0 or k = 0 is trivial. By virtue of (12) the implica-
tion (13) holds if

(14) |j| 6= |k| and j ∧ k 6= 0.

We have to study the resting cases.
From m · n > 0 it follows that |m + n| > |n| > |m|. Besides (m + n) ∈

K2 ⊆ K∞. Repeating the argument one obtains ∀σ = 2, 3, . . . :

|m+ σn| > · · · > |m+ n| > |n| > |m|
and m+ σn ∈ K∞. Denote

m+ n = p, m+ 2n = q, m+ 3n = r, m+ 4n = s.

Each pair of vectors from the set {m,n, p, q, r, s} is linearly independent.
1. Assume j ∧ k = 0, but |j| 6= |k|. Then j + k 6= 0. Exclude from the set

{m,n, p, q, r, s} the vector (at most one, if any) which is collinear to j (and
then to k, and j + k). Exclude also the vectors (at most two, if any) whose
lengths equal either |j| or |k|.

Pick one of the remaining vectors, say m. Then (j − m) ∧ (k + m) =
(j + k) ∧ m 6= 0. Similarly (j + m) ∧ (k − m) 6= 0. We claim that either
|j −m| 6= |k +m| or |j +m| 6= |k −m|. Indeed if both equalities hold, then

0 = (j −m) · (j −m)− (k +m) · (k +m) +
+(j +m) · (j +m)− (k −m) · (k −m) = 2(j · j − k · k),

and therefore |j| = |k|, which is a contradiction. Hence if , say |j −m| 6=
|k +m|, then j + k = (j + (−m)) + (k +m) ∈ K∞.
2. Assume |j| = |k| 6= 0. Exclude from the set {m,n, p, q, r, s} the vector

(at most one, if any) whose length equals |j| = |k|. Exclude also the vectors
(at most three, if any), which are collinear to either j, or k or j + k. Finally
exclude the vector (at most one, if any), which is orthogonal to j+ k. There
is at least one vector remained, say m.

Then

(j ±m) · (j ±m)− (k ∓m) · (k ∓m) = ±2(j + k) ·m 6= 0.

Therefore |j +m| 6= |k −m| and |j −m| 6= |k +m|.
Calculating

(j +m) ∧ (k −m)− (j −m) ∧ (k +m) = 2m ∧ (j + k) 6= 0,
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we see that at least one of two pairs {(j +m), (k−m)}, {(j −m), (k+m)}
is linearly independent. Hence we conclude, as in 1, that j + k ∈ K∞. �

5. Relaxation of forcing for 2D NS/Euler system:
approximation results and uniform bounds for trajectories

In this Section we formulate some results on boundedness and continuity of
solutions of 2D NS/Euler system with respect to the forcing. We assume the
space of degenerate forcings to be endowed with a weak topology determined
by so-called relaxation metric. These results are used in Section 6 for proving
controllability in observed projection. Besides they are interesting for their
own sake as an example of application of relaxed controls to NS/Euler and
other classes of PDE systems. The proofs are rather technical; they are to
be found in Appendix.

5.1. Relaxation metric.

De�nition 5.1. (see e.g. [13, 14]) The relaxation pseudometric in the space
L1

(
[0, T ],Rd

)
is de�ned by the seminorm

‖u(·)‖rx = max
t∈[0,T ]

{∥∥∥∥∫ t

0
u(τ)dτ

∥∥∥∥
Rd

}
.

The relaxation metric is obtained by identi�cation of the functions which
coincide for almost all τ ∈ [0, T ]. �

The relaxation metric is weaker than the natural metric of L1
(
[0, T ],Rd

)
.

The relaxation norms of fast oscillating functions are small, while their L1-
norms can be large. For example

‖ω1/2 cosωt‖rx = max
t∈[0,T ]

∣∣∣∣∫ t

0
ω1/2 cosωτdτ

∣∣∣∣ ≤ ω−1/2,

and ‖ω1/2 cosωt‖rx → 0, as ω → +∞, while ‖ω1/2 cosωt‖L1 → +∞, as ω →
+∞.

Lemma 5.2. Let for integrable functions φn(·), n = 1, 2, . . . , their relax-

ation norms ‖φn(·)‖rx
n→∞−→ 0. Let {rβ(t)| β ∈ B} be a family of absolutely-

continuous functions with their W1,2-norms equibounded:

∃C : ‖rβ(0)‖2 +
∫ T

0
(ṙβ(τ))2dτ ≤ C2, ∀β ∈ B.

Then ‖rβ(·)φn(·)‖rx
n→∞−→ 0, uniformly with respect to β ∈ B. �

Proof.∣∣∣∣∫ τ

0
rβ(t)φn(t)dt

∣∣∣∣ =
∣∣∣∣rβ(τ)

∫ τ

0
φn(t)dt−

∫ τ

0
ṙβ(t)

∫ t

0
φn(θ)dθdt

∣∣∣∣ ≤
≤ C

(
1 + 2

√
τ
)
‖φn(t)‖rx . �
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5.2. Boundedness of solutions of forced 2D NS/Euler system. Con-
sider a set F of degenerate forcings v(t, x) =

∑
k∈K1 vk(t)eik·x; ]K1 = d. We

identify these forcings with vector-functions v(t) = (vk(t)) ∈ L∞([0, T ]; Rd).
Forced 2D NS/Euler system is treated as an evolution equation in Hs, s ≥ 2.
An example of boundedness result, we are interested in, would be the fol-
lowing

Lemma 5.3. Assume the set F of degenerate forcings to be bounded in
the relaxation metric. Fix the time interval [0, T ] and the initial condition
w(0) = w0 ∈ Hs, s ≥ 2 for the 2D NS/Euler system. Then the trajectories
wt of the system (4) forced by v(t, x) ∈ F are equibounded in H0 norm:

∃b : vrai sup
t∈[0,T ]

‖wt‖0 ≤ b. �

This result is not covered by classical results on boundedness of solutions
of 2D NS/Euler system because the set of forcings can be bounded in the
relaxation metric while being unbounded in L∞ and L2 metric.

We will derive the previous result from a stronger assertion (Theorem 5.4).
To formulate the assertion consider the primitives V (·) =

∫ ·
0 v(τ)dτ of v(·) ∈

F. By assumptions of the Lemma 5.3 V (·) are equibounded in the metric of
C0([0, T ],Rd).

Denote the trigonometric polynomial
∑

k∈K1 Vk(t)eik·x by Vt(x). The
forced (controlled) 2D Euler system can be written as

(15) ∂wt/∂t = (ut · ∇)wt + ν∆wt + ∂Vt/∂t.

Put yt = wt − Vt. The equation (15) can be rewritten as:

(16) ∂yt/∂t = (ut · ∇)(yt + Vt) + ν∆yt + ν∆Vt.

Recall that ut is the divergence-free solution of the equation ∇⊥ · ut =
wt = yt + Vt. It can be represented as a sum Yt + Vt, where Vt,Yt are the
divergence-free solutions of the equations ∇⊥ · Vt = Vt, ∇⊥ · Yt = yt, with
periodic boundary conditions.

Hence the equation (16) allows for the representation

∂yt/∂t = ((Yt + Vt) · ∇) (yt + Vt)(17)

= (Yt · ∇) yt + (Vt · ∇) yt + (Yt · ∇)Vt + ν∆yt + ν∆Vt + (Vt · ∇)Vt.

This equation can be seen as 2D NS/Euler equation forced by y-linear
forcing term (Vt · ∇) yt+(Yt · ∇)Vt together with y-independent forcing term
ν∆Vt + (Vt · ∇)Vt.

Consider instead of (17) a more general equation

(18) ∂yt/∂t = (Yt · ∇) yt +
(
V1

t · ∇
)
yt + (Yt · ∇)V 2

t + ν∆yt + V 0
t ,

where all the forcing terms V 0
t , V

1
t , V

2
t are now decoupled and V1

t is the
divergence-free solution of the equation ∇⊥ · V1

t = V 1
t .

Consider the set FB of triples {(V 0
t , V

1
t , V

2
t )} satisfying the condition:

(19) sup
t∈[0,T ]

max{‖V 0
t ‖, ‖V 1

t ‖, ‖V 2
t ‖} ≤ B, B > 0.
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As far as V i
t are trigonometric polynomials (of �xed order) in x the norms

‖ · ‖Hs are equivalent for all s, so one just uses the notation ‖ · ‖.
All the results of this Section will be proven for the equation (18) and for

the forcings from the set FB de�ned by (19).

Remark 5.1. The equation (18) is "nonclasically forced" 2D NS/Euler equa-
tion. Remarks on existence and uniqueness results for its solutions can be
found in Appendix. �

Theorem 5.4. Let FB = {(V 0
t , V

1
t , V

2
t )} be the set de�ned by (19). Fix the

time interval [0, T ] and the initial condition y(0) = y0 ∈ Hs, s ≥ 2 for the
system (18) forced by the elements of FB. Then ∃b > 0 such that for all
(V 0

t , V
1
t , V

2
t ) ∈ FB and for the corresponding trajectories yt of the equation

(18) there holds:

(20) i) vrai sup
t∈[0,T ]

‖yt‖L∞ ≤ b;

(21) ii) vrai sup
t∈[0,T ]

‖yt‖H2 ≤ b;

(22) iii)

∫ T

0

∥∥∥∥ ∂∂tyt

∥∥∥∥2

1

dt ≤ b. �

Remark 5.2. Obviously the conclusion of the Lemma 5.3 can be derived
from this theorem.

The proof of the Theorem 5.4 is to be found in Appendix.

5.3. Continuous dependence of trajectories on relaxed forcings. In
this subsection we establish continuous dependence of trajectories of the
equation (18) on the forcing terms V 1

t , V
2
t , V

0
t , as these latter vary continu-

ously in the relaxation metric.

Theorem 5.5. Consider the set FB = {(V 0
t , V

1
t , V

2
t )} de�ned by (19). Fix

the time interval [0, T ] and the initial condition y(0) = y0 ∈ Hs, s ≥ 2 for
the system (18) forced by the elements of FB. Endow FB with the relaxation
metric and endow the space of trajectories of the 2D NS/Euler equation with
L∞((0, T );H0)-metric. Then the restriction of the forcing/trajectory map
onto FB is uniformly continuous. �

The proof of the Theorem 5.5 is to be found in Appendix.

6. Proof of controllability in observed component for 2D
NS/Euler system

We prove �rst the result on solid controllability in observed component
(Theorem 4.1). The construction introduced in proof is used to establish
controllability in �nite-dimensional projection and L2-approximate control-
lability.

First we slightly particularize the assertion of the Theorem 4.1.
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Theorem 6.1. Let K1 be a set of controlled forcing modes. De�ne according
to (12) the sequence of sets Kj , j = 2, . . . , and assume that, for some M ,
KM ⊃ Kobs.

Then for all su�ciently small T > 0 the 2D NS/Euler system is solidly
controllable in projection on the observed component. Besides one can choose
the corresponding family of controls v(·, b) (cf. De�nition 3.7) which is pa-
rameterized continuously in L1-metric by a compact subset BR of a �nite-
dimensional linear space and is uniformly (with respect to t, b) bounded:
∀t, b : ‖v(t, b)‖ ≤ A(T,R). �.

The only additional restriction in the claim of the latter result is smallness
of time. To deal with large T we can apply zero control on the interval
[0, T − θ] with θ small and then apply the result of the Theorem 6.1.

6.1. Sketch of the proof. By assumption the set Kobs of observed modes
is contained in some KM , M ≥ 1, from the sequence de�ned by (12). We
will proceed by induction on M .

If M = 1 then K1 ⊃ Kobs, i.e. all the equations for the observed modes
contain controls. Then it is easy to establish small time controllability in
observed component, given the fact that there are no a priori bounds on
controls (this is done in Subsection 6.2).

Let M > 1, KM ⊃ Kobs ⊃ K1. We start acting as if independent control
parameters enter all the equations indexed by k ∈ KM . Then we are under
previous assumption and hence can construct a needed family of controls.
Though the control parameters indexed by k ∈ KM \K1 are �ctitious and our
next step would be approximating the actuation of (some of) these �ctitious
controls by actuation of controls of smaller dimension. Now we employ the
controls, which only enter the equations indexed by k ∈ KM−1 ⊂ KM . The
possibility of such approximation for 2D NS/Euler system (provided that the
relation between KM−1 and KM is established by (12)) is the main element
of our construction.

If M − 1 > 1, then the approximating controls are also �ctitious, but we
can repeat the reasoning in order to arrive after M − 1 steps to true controls
indexed by K1.

We can look at the process the other way around. Starting with a (spe-
cially chosen) family of degenerate controls in low modes, indexed by K1 we
transfer their actuation to the higher modes via the nonlinear term of 2D
NS/Euler system.

6.2. Proof of the Theorem 6.1: �rst induction step. The �rst induc-
tion step (M = 1) follows from the following Lemma.

Lemma 6.2. Let M = 1, and K1 = Kobs. The 2D NS/Euler system is split
in the subsystems (9) and (11), which can be written in a concise form as

dq1/dt = f1(q1, Q) + v, dQ/dt = F (q1, Q)(23)

q1(0) = q10, Q(0) = Q0,
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dim q1 = N . Then for su�ciently small τ > 0: there exists a family of
controls v(t; b) which satis�es the conclusion of the Theorem 6.1. �

Proof. Without lack of generality we may assume the initial condition for
the observed component to be q1(0) = 0Rκ1 . We do not diminish generality
either by assuming K1 = Kobs instead of K1 ⊇ Kobs. Recall that Π1 :
(q1, Q) → q1.

De�ne for y ∈ RN , ‖y‖l1 =
∑N

j=1 |yi|. Let CR = {y ∈ RN | ‖y‖l1 ≤ R}.
Fix γ > 1. Take the interval [0, τ ]; the value of small τ > 0 will be

speci�ed later on. For each b ∈ γCR take v(t; p, τ) = τ−1p - a constant
control. Obviously γCR ⊃ CR and

∫ τ
0 v(t; p, τ)dt = p. For �xed τ > 0 the

map p 7→ v(t; p, τ) is continuous in L1-metric.
We claim that ∃τ0 > 0 such that for τ ∈ (0, τ0) the family of controls

v(t; p, τ), p ∈ γCR satis�es the conclusion of the Lemma, so one may take
b = p, BR = γCR.

Denote for �xed τ > 0 the map

p 7→ v(·; p, τ) 7→ (Π1 ◦ F/Oτ ) (v(·; p, τ))

by Φ(p; τ). Recall that Π1 ◦ F/Oτ is the end-point component map (cf.
De�nition 3.5). The map p 7→ v(·; p, τ) is continuous in L1-metric of controls
and hence also in the relaxation metric. Therefore by Theorem 5.5 the map
p 7→ Φ(p; τ) is continuous.

Restrict the equations (23) to the interval [0, τ ] and proceed with time
substitution t = τξ, ξ ∈ [0, 1]. The equations take form:

(24) dq1/dξ = τf1(q1, Q) + p, dQ/dξ = τF (q1, Q), ξ ∈ [0, 1].

For τ = 0 the 'limit system' of (24) is

(25) dq10/dξ = p, dQ0/dξ = 0, ξ ∈ [0, 1].

The end-point component map p 7→ q10(1) for the limit system is the
identity.

From classical results on boundedness of solutions of 2D NS/Euler system
we conclude that q1-components of the solutions of the systems (24) and
(25) (with the same initial condition) deviate by a quantity ≤ Cτ , where the
constant C can be chosen independent of p, τ for su�ciently small τ > 0.
Then ‖Φ(·; τ)− Id‖ ≤ Cτ . By degree theory argument there exists τ0 such
that ∀τ ∈ (0, τ0) the image of p 7→ Φ(p; τ) covers CR solidly.

To complete the proof note that ‖v(t; p, τ)‖ are uniformly bounded by
γRτ−1. �

In what follows we will need a modi�cation of the previous Lemma.

Lemma 6.3. Consider the system (23) and impose the boundary conditions

q1(0) = φ(p), q1(τ) = ψ(p), p ∈ P, P - compact, φ, ψ - continuous,

on its q1-component.
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Then for all su�ciently small τ > 0, there exists a family of controls
v(t; p, τ) de�ned on [0, τ ], such that the corresponding trajectories, which
meet the initial condition, meet the end-point condition approximately:

‖q1(τ ; p)− ψ(p)‖ ≤ Cτ.

Besides ‖Q(t)−Q0‖0 ≤ γCτ, ∀t ∈ [0, τ ]. Here C can be chosen independent
on p, τ. �

The proof is similar to the previous one. One can choose the family of
controls v(t, p) = τ−1(ψ(p)− φ(p)), t ∈ [0, τ ].

6.3. Generic induction step: solid controllability by extended con-
trols. Let us proceed further with the induction. Assume that the statement
of the Theorem 6.1 has been proven for all M ≤ (N − 1); we are going to
prove it for M = N .

Consider now the system (9)-(10)-(11) with the extended set K1
e = K2 of

controlled forcing modes; K1
e ⊇ K1.

Obviously this new system satis�es the conditions of the Theorem 6.1;
indeed

K1
e = K2 ⇒ Kj

e = Kj+1, j ≥ 1,

for the sets Kj
e,Kj , de�ned by (12). Hence KM−1

e = KM ⊇ Kobs.
By induction hypothesis the system with extended controls is solidly con-

trollable in observed projection: there exists a continuous in L1-metric family
of extended controls v(t; b) which satis�es the conclusion of the Theorem 6.1.

This family of controls is uniformly bounded; assume that ‖v(t; b)‖l1 ≤
A, ∀b ∈ B, ∀t ∈ [0, T ]. The values of v(t; b) belong to Rκ2 , where κ2 =
#K2 = K1

e .
Evidently these extended controls are unavailable for the original problem.

We are going to approximate their action by the action controls from a more
restricted set.

To this end let us �rst take the vectors e1, . . . , ek2 from the standard basis
in Rk2 together with their opposites −e1, . . . ,−ek2 . Multiply each of these
vectors by A and denote the set of these 2κ2 vectors by E

A
2 . The convex hull

convEA
2 of EA

2 contains all the values of v(t; b).
First we will approximate the family of functions v(t; b) which take their

values in convEA
2 by EA

2 -valued functions. Such a possibility is a central
result of relaxation theory.

We will apply a modi�cation of R.V.Gamkrelidze's Approximation Lemma
(see [14, Ch.3],[13, p.119]). According to it, given ε > 0 and a parameterized
family of conv E2-valued functions, which varies continuously in L−1 metric
with parameter, one can construct a continuously parameterized family of
E2-valued functions which ε-approximates the �rst family in the relaxation
metric uniformly with respect to the parameter. Moreover the functions of
the approximating family can be chosen piecewise-constant and the number
L of the intervals of constancy can be chosen the same for all b ∈ B.
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Actually the Approximation Lemma in [14, Ch.3] regards weak approxi-
mation of strongly continuous families of relaxed controls (Young measures).

Proposition 6.4. (cf. Approximation Lemma; [14, Ch.3]). Let B be a
compact and {v(t; b)|b ∈ B} be a family of (conv EA

2 )-valued functions, which
depends on b ∈ B continuously in L1 metric. Then for each ε > 0 one can
construct a L1-continuous equibounded family {z(t; b)| b ∈ B} of EA

2 -valued
functions which ε-approximates the family {v(t; b)|b ∈ B} in the relaxation
metric uniformly with respect to b ∈ B. Moreover the functions z(t; b) can
be chosen piecewise-constant and the number L of the intervals of constancy
can be chosen the same for all b ∈ B. The intervals of constancy of these
controls vary continuously with b ∈ B. �

We omit the proof, which is a variation of the proof in [14, Ch.3].
Applying this result to our case we construct a L1-continuous family

of EA
2 -valued functions {z(t; b)| b ∈ B} which approximates the family

{v(t; b)| b ∈ B} uniformly in the relaxation metric. According to the The-
orem 5.5 the end-point map F/OT is continuous in the relaxation metric.
Therefore we conclude with the following result.

Proposition 6.5. For some L ≥ 1 there exists a family of piecewise-constant
EA

2 -valued controls {z(t; b)| b ∈ B} (with at most L intervals of constancy)
such that b 7→ z(t; b) is continuous with respect to L1 metric and the reduced
system is solidly controllable by means of the family. �

6.4. Generic induction step: solid controllability of the original
system. Let us compare the original system (9)-(10)-(11) with the system
driven by the EA

2 -valued controls {z(t; b)| b ∈ B} from the Proposition 6.5.
In both systems the equations for the coordinates qk, indexed by k ∈ K1

coincide:

(26) q̇k =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk + vk, k ∈ K1.

We collect these coordinates into the vector denoted by q1.
In the original system the equations for the variables qk, k ∈

(
K2 \ K1

)
are 'uncontrolled':

(27) q̇k =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk, k ∈
(
K2 \ K1

)
.

They di�er from the corresponding equations of the system with extended
controls, which are:

(28) q̇k =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk + zk, k ∈
(
K2 \ K1

)
.

We collect qk, k ∈
(
K2 \ K1

)
into the vector denoted by q2 and denote

q = (q1, q2).
Finally the equation for the in�nite-dimensional component Qt, which

collects the higher modes eik·x, k 6∈ K2, does not contain controls and is the
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same in both systems. It su�ces for our goals to write this equation in a
concise form as:

(29) Q̇ = h(q,Q).

According to the Proposition 6.5 we manage to control our system solidly
by means of extended EA

2 -valued piecewise-constant controls z(t; b). By
Proposition 6.4 the intervals of constancy vary continuously with b ∈ B.
Our task now is to design a family of "small-dimensional" controls x(t; b) for
the equations (26)-(27)-(29), such that the maps

b 7→ z(·; b) 7→ (Πobs◦F/Oτ ) (z(·; b)) and b 7→ x(·; b) 7→ (Πobs◦F/Oτ ) (x(·; b))

are C0-close.
If on some interval of constancy T ∈ [t, t̄] the value of z(t; b) equals ±Aek±

Āe−k with k ∈ K1, then we just take the control x(t; b) in (26) coinciding
with z(·; b) on this interval.

The real problem arises when on some interval of constancy z(t; b) takes
value ±Aek̄ with k̄ ∈

(
K2 \ K1

)
. There are no controls available in the

corresponding equation (27) for qk̄ and we will "a�ect" the evolution of qk̄
via the variables qm, m ∈ K1 which enter this equation.

More exactly the construction of the controls x(t; b, ω) on the intervals of
constancy of z(t; b) goes as follows:

1) on an interval [t, t̄] of the �rst kind, where z(t; b) = A(b)ek + A(b)e−k

with k ∈ K1 we take x(t; b, ω) = z(t; b);
2) on an interval [t, t̄] of the second kind, where z(t; b) = A(b)ek +A(b)e−k

with k ∈ K2 \ K1, pick a pair m,n ∈ K1 such that

m ∧ n 6= 0, |m| 6= |n|, m+ n = k,

such pair exists by the de�nition of K2 (see (12)). Choose Am(b), An(b) ∈ R
satisfying

(30) |Am(b)| = |An(b)|
∧
Am(b)An(b)(m ∧ n)(|m|−2 − |n|−2) = A(b).

and put

xm(t; b, ω) = x−m(t; b, ω) = Am(b)iωeiωt, A−m = Am,

xn(t; b, ω) = x−n(t; b, ω) = An(b)(−iω)e−iωt, A−n = An,

taking other components xj(t; b, ω) equal to 0.
It is easy to see that the primitivesX(t; b, ω) =

∫ t
0 x(s; b, ω)ds are bounded

by a constant which can be chosen independent of b and ω. BesidesX(T ; b, ω)
varies continuously with b (for �xed ω).

Consider two trajectories wb,ω
t , w̄t, t ∈ [0, T ], which are driven by the

controls x(t; b, ω) and z(t; b) correspondingly. We will prove that wb,ω
t and

w̄t match asymptotically (as ω →∞) in all the components but q1. Let Π1

be the projection onto the space of modes {eim·x| m ∈ K1}, while Π⊥
1 be the

projection onto its orthogonal complement.
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Proposition 6.6. i) The trajectories wb,ω
t are equibounded:

∃C : ‖wb,ω
t ‖0 ≤ C, ∀t ∈ [0, T ], b ∈ B, ω > 0;

ii) For �xed ω > 0 the dependence b 7→ wb,ω
t on b is continuous in C0[0, T ]-

metric of the controls;
iii) For any ε > 0 there exists δ > 0 and ω0 such that if ω > ω0 and∥∥wb,ω|t=0 − w̄|t=0

∥∥
0
≤ δ, then ∀t ∈ [0, T ] : ‖Π⊥

1

(
wb,ω

t − w̄t

)
‖0 ≤ ε. �

Assuming the claim of this Proposition (which is proven in the next sub-
section) to hold true let us complete the induction.

By assumption the system (26)-(28)-(29) is solidly controllable in observed
component by means of the family of extended controls z(t; b), i.e. the map
b 7→

(
Πobs ◦ F/T T

)
(z(t; b)) covers solidly the cube CR in Πobs(H2). Ac-

cording to the Proposition 6.6 all the components, but q1, of the trajectories
driven by x(t; b, ω0) match up to arbitrarily small ε, provided ω is su�ciently
large. For �xed ω the controls x(t; b, ω) depend continuously (in L1-metric)
on b ∈ B.

By the degree theory argument we may conclude that for large ω the map

b 7→
(
Π⊥

1 ◦Πobs ◦ F/T T

)
(x(t; b, ω))

covers solidly the set Π⊥
1 (CR).

Still the map b 7→ (Π1 ◦F/T T )(x(t; b, ω)) does not necessarily match with
b 7→ (Π1 ◦ F/T T )(z(t; b)). We have to settle the q1-component.

Considering q1(t;ω, b) and evaluating it at T we observe that according
to the Proposition 6.6 the values q1(T ;ω, b) are equibounded for all b, ω and
for �xed ω > 0 the dependence b→ q1(T ;ω, b) is continuous. Put

φ(b) = q1(T ;ω, b), ψ(b) = (Π1 ◦ F/T T ) (z(t; b)).

We can apply Lemma 6.3 for constructing controls x(t; b, ω) de�ned on an
arbitrarily small interval [T, T + τ ] such that

‖q1(T + τ ; b)− ψ(b)‖ = O(τ),

‖(Π⊥
1 ◦ F/T T+τ )(x(t;ω))− (Π⊥

1 ◦ F/T T )(z(t; b))‖ = O(τ), as τ → 0.

Then choosing τ > 0 su�ciently small we prove that the maps

b 7→ (Πobs ◦ F/T T )(z(t; b)) and b 7→ (Πobs ◦ F/T T+τ )(x(t; b, ω))

are close in C0-metric and therefore by the degree theory argument the last
map covers solidly the cube CR. It means that the system is time-(T + τ)
solidly controllable. �

6.5. Proof of the Proposition 6.6. We proceed by induction on a uni-
formly (with respect to b ∈ B) bounded number of the intervals of constancy
of controls z(·; b). Since on the intervals of the �rst kind the controls z(·; b)
and x(·; b) coincide it su�ces to consider one interval [t, t̄] of the second kind.
We may think that [t, t̄] = [0, T ].
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Recall that on an interval of the second kind the equation for w̄t, driven
by the constant control z(t; b), is:

∂tw̄t =
(
W̄t · ∇

)
w̄t + ν∆w̄t +Aem+n + Āe−(m+n), m, n ∈ K1,

where W̄t is the divergence-free solution of the equation ∇⊥ · W̄t = w̄t under
periodic boundary conditions.

Now take the control x(τ ;ω, b), constructed in the precedent Subsection

and consider its primitive V ω
t (b) =

∫ t
0 x(τ ;ω, b)dτ . The 2D NS/Euler system

can be written on [0, T ] as

∂wω
t /∂t = (uω

t · ∇)wω
t + ν∆wω

t + ∂V ω
t /∂t.

Put yω
t = wω

t − V ω
t . Notice that yω

t and wω
t di�er only in K1-indexed

modes, i.e. Π⊥
1 y

ω
t = Π⊥

1 w
ω
t . The equation for yω

t is:

(31) ∂yω
t /∂t = (uω

t · ∇)(yω
t + V ω

t ) + ν∆ (yω
t + V ω

t ) .

The function uω
t can be represented as a sum Yω

t + Vω
t , where Vω

t ,Yω
t are

the divergence-free solutions of the equations: ∇⊥ · Vω
t = V ω

t , ∇⊥ · Yω
t = yω

t ,
under periodic boundary conditions.

Hence the equation (31) allows for the representation

∂yω
t /∂t = ((Yω

t + Vω
t ) · ∇) (yω

t + V ω
t ) + ν∆ (yω

t + V ω
t ) = (Yω

t · ∇) yω
t +

+(Vω
t · ∇) yω

t + (Yω
t · ∇)V ω

t + ν∆yω
t + ν∆V ω

t + (Vω
t · ∇)V ω

t .(32)

Denote ei`·x by e`; then

V ω
t = (Amem +A−ne−n)eiωt + (A−me−m +Anen)e−iωt.

Proceeding as in Section 2 we compute

(Vω
t · ∇)V ω

t = Am(b)An(b)(m ∧ n)(|m|−2 − |n|−2)em+n +

+Am(b)An(b)(m ∧ n)(|m|−2 − |n|−2)e−(m+n) + (· · · )ei2ωt + (· · · )e−i2ωt,

or by virtue of (30),

(33) (Vω
t · ∇)V ω

t = A(b)em+n +A(b)e−(m+n) + (· · · )ei2ωt + (· · · )e−i2ωt.

Here (· · · ) stay for (unspeci�ed) factors, which do not depend on t.
The control-quadratic term (Vω

t · ∇)V ω
t at the righ-hand side of (32) will

act as our new control. For su�ciently large ω the summands (· · · )ei2ωt +
(· · · )e−i2ωt in the control-quadratic term (cf. (33)) together with control-
linear terms are small in relaxation metric (see Lemma 5.2). Hence for large
ω the controls x(τ ;ω, b) approximate properly the actuation of the control

A(b)em+n +A(b)e−(m+n).
To formalize this introduce the notation ηω

t = yω
t − w̄t, we obtain for ηω

t

the equations:

∂tη
ω
t = ((Wω

t + Vω
t ) · ∇) yω

t −
(
W̄t · ∇

)
w̄t +

+ν∆ηω
t +

(
(Vω

t · ∇)V ω
t − (Aem+n + Āe−(m+n))

)
.
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Subtracting and adding ((Wω
t + Vω

t ) · ∇) w̄t to the right-hand side of the
latter equation we transform it into

∂tη
ω
t = (Hω

t · ∇) ηω
t +

((
W̄t + Vω

t

)
· ∇

)
ηω

t + ((Hω
t + Vω

t ) · ∇) w̄t +
+ν∆ηω

t + ((Vω
t · ∇)V ω

t −Aem+n) ,(34)

where Hω
t is the divergence-free solution of the equation ∇⊥ · Hω

t = ηω
t .

By construction V ω
t ,Vω

t ,
(
(Vω

t · ∇)V ω
t − (Aem+n + Āe−(m+n))

)
converge

to 0 in relaxation metric, as ω → +∞. By the continuity result (Theo-
rem 5.5) trajectories of (34) converge in C0 to the trajectories of the equation

(35) ∂tηt =
((
Ht + W̄t

)
· ∇

)
ηt + (Ht · ∇) w̄t + ν∆ηt,

as ω → +∞,
To estimate the evolution of ‖ηt‖0 by virtue of (35) we multiply both parts

of (35) by ηt in H0. Integrating the resulting equality on [0, τ ] and observing
that 〈

((
W̄t +Ht

)
· ∇

)
ηt, ηt〉 = 0 we conclude

1
2
‖ητ‖2

0 + ν

∫ τ

0
‖ηt‖2

1dt =
1
2
‖η0‖2

0 +
∫ τ

0
〈(Ht · ∇) w̄t, ηt〉dt.

The summand 〈(Ht · ∇) w̄t, ηt〉 can be estimated as in the Section 5.3:

|〈(Ht · ∇) w̄t, ηt〉| ≤ C‖Ht‖1‖∇w̄t‖1‖ηt‖0 ≤ C‖∇w̄t‖1‖ηt‖2
0.

One concludes ‖∇w̄t‖1 ≤ c′‖w̄t‖2, while ‖w̄t‖2 are equibounded according
to the Proposition 5.4.

Thus we get
1
2
‖ητ‖2

0 ≤
1
2
‖η0‖2

0 + c

∫ τ

0
‖ηt‖2

0dt,

and by application of Gronwall inequality we conclude

1
2
‖ητ‖2

0 ≤
1
2
‖η0‖2

0e
cT . �

7. Proof of the Theorem 4.3

The proof of the result regarding L2-approximate controllability (Theo-
rem 4.4) for 2D NS system can be found in [5]; it holds also for 2D Euler
system. Here we provide a proof of the Theorem 4.3, which regards control-
lability in �nite-dimensional projection. Following the steps of our proof the
readers can recover the proof of Theorem 4.4.

Let L be a `-dimensional subspace of H2 and ΠL be L2-orthogonal projec-
tion ofH2 onto L. We start with constructing a �nite-dimensional coordinate
subspace which is projected by ΠL onto L.

To �nd one it su�ces to pick a (dimL) × (dimL)-sub-matrix, from the
(dimL)×∞ matrix which is a coordinate representation of ΠL. We look for
more: for each ε > 0 we would like to �nd a �nite-dimensional coordinate
subspace, which contains an `-dimensional (non-ccordinate) subsubspace Lε,
which is ε-close to L. The latter means that not only ΠLLε = L but also
ΠL|Lε is ε-close to the identity operator.
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To achieve this we choose an orthonormal basis e1, . . . , e` in L and take
for each ei its �nite-dimensional component (truncation) ēi, which is ε-close
to ei. All ēi belong to some �nite-dimensional coordinate subspace S of H2;
which reunites modes indexed by some symmetric set S ⊂ Z2. Let ΠS be
L2-orthogonal projection of H2 onto S. The subspace S together with the
subsubspace Lε spanned by ē1, . . . , ē` are the ones we looked for. Indeed

∥∥ΠLēi − ēi
∥∥ =

∥∥∥∥∥∥
∑̀
j=1

〈ēi, ej〉ej − ēi

∥∥∥∥∥∥ ≤
∑̀
j=1

|〈ēi− ei, ej〉|+ ‖ei− ēi‖ ≤ (`+ 1)ε.

Without lack of generality we may assume that ‖ΠS(ϕ̃)− ϕ̃‖0 ≤ ε.
The set K1 of controlled modes is saturating, i.e. for Kj de�ned by (12),

KM ⊇ S for some M . This means that the system is solidly controllable in
the observed component qS .

In the proof of the Theorem 4.1 (Section 6) we started with a "full-di-
mensional" set of controlled modes indexed by KM and then constructed
successively controls which only enter the equations for the modes indexed
by KM−1, . . . ,K1.

Assume that we are at the �rst induction step under the conditions of the
Lemma 6.2, i.e. that all the coordinates of the component qS are controlled.
Following Lemma 6.2 let us construct a family of controls which steers the qS-
components of the corresponding trajectories wt from ΠS(ϕ̃) to the points
of the "ball" CR in S. We can construct these controls to actuate on an
interval of arbitrarily small length τ > 0. Denoting by Q. the component of
wt's which is orthogonal to qs we can conclude from (24) and (25):

‖Qt‖0 ≤ ‖Q0‖0 + Cτ, t ∈ [0, τ ],

for some constant C > 0.
Recall that ‖Q0‖0 = ‖ΠS(ϕ̃)− ϕ̃‖0 ≤ ε. Choosing τ ≤ ε/C, we conclude

‖Qt‖0 ≤ 2ε, ∀t ∈ [0, τ ].
Let us check what happens with the component Q· at generic induction

step of the proof of the Theorem 6.1. At the �rst stage of each step (Sub-
section 6.3) we apply the Approximation Lemma (Proposition 6.4). At this
stage the trajectories are approximated up to arbitrary small (uniformly for
t ∈ [0, τ ]) error δ > 0. We can choose δ ≤ ε/(2M).

At the second stage of each induction step (Subsection 6.4) the component
Q· (which belongs to the image of the projection Π2) su�ers arbitrarily small
alteration. We can make it (uniformly for t ∈ [0, τ ]) smaller than ε/(2M).

Therefore at each induction step the component Q· su�ers alteration by
value ≤ ε/M ; total alteration is ≤ ε. Hence after the induction procedure
‖Qτ‖0 ≤ 2ε+ ε = 3ε.

At the end we arrive to a family of controls x(·; b) such that the map
b 7→ ΠS ◦ F/T T )(x(t; b)) covers solidly the ball CR in S. Besides

‖(Π⊥
S ◦ F/T T )(x(t; b))‖ ≤ 3ε.
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Then by the choice of S the map b 7→ ΠL ◦ ΠS ◦ F/T T )(x(t; b)) covers the
set CR/2 ∩ L, if ε > 0 is su�ciently small. �

8. Appendix

8.1. Forced 2D Euler equation: existence and uniqueness of so-
lutions. We outline the proof which is a modi�cation of the proof of the
existence and uniqueness theorem for 2D Euler equation to be found in
[17]. Recall that the original proof of existence and uniqueness of classical
solutions has been accomplished by W.Wolibner in [22].

Consider the 'nonclassically forced' equation (18) with ν = 0:

∂yt/∂t = (Yt · ∇) yt +
(
V1

t · ∇
)
yt + (Yt · ∇)V 2

t + V 0
t ,

where V j
t (j = 0, 1, 2) are trigonometric polynomials and V1

t and Yt are
divergence-free solutions of the equations

∇⊥ · V1
t = V 1

t , ∇⊥ · Yt = yt,

under periodic boundary conditions.
Following the approach of [17] let us introduce a map ξ· 7→ Φ(ξ) = η·

which is de�ned by means of the linear di�erential equations

∇⊥ · ζt = ξt,

∂ηt/∂t = (ζt · ∇) ηt +
(
V1

t · ∇
)
ηt + (ζt · ∇)V 2

t + V 0
t .

It is easy to see that �xed points of the map Φ correspond to classical solu-
tions of the equation (18).

Choosing an appropriate set Ω of Hölderian (of exponent δ ∈ (0, 1)) with
respect to time and space variables) functions with L

(x)
∞ -norms bounded by a

constant, one is able to establish, as in [17], that Φ maps Ω in itself. Besides
S is compact convex subset of C0 and existence of �xed point is derived from
Schauder theorem.

Analysis of the proof shows that the equiboundedness of the L
(x)
∞ -norms

of V j
t guarantee equiboundedness of the L

(x)
∞ -norms of the corresponding

solutions of (18). This will prove the statement i) of the Proposition 5.4.

8.2. Forced 2D NS equation: existence, uniqueness and bounded-
ness of solutions. The existence of solutions from L∞ ([0, t];H2) for the
nonclassically forced NS equation (18) can be established in the same way
as for classically forced NS equation, for example by energy estimates for
Galerkin approximations.

In the same classical way we prove the boundedness of ‖yt‖2, and of∫ T
0 ‖ d

dtyt‖2
1dt i.e. the estimates (21) and (22). The boundedness of L

(x)
∞ -

norms (the estimate (20)) follows then from Sobolev inequality (see [1]).
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8.3. Proof of the Theorem 5.4: equiboundedness of solutions for
2D Euler equation. For the nonclassically forced 2D Euler equation the

L
(x)
∞ -equiboundedness of solutions (Theorem 5.4; item i)) comes with the

proof of existence (see Subsection 8.1).
To prove the statement ii) of the Theorem 5.4 we observe �rst that uniform

(in t) L∞-equiboundedness of yt implies their uniform (in t) H0-equiboun-
dedness. To arrive to the conclusion of the assertion ii) let us di�erentiate
both sides of the equation (18), say, with respect to xi. Abbreviating ∂/∂xi

to ∂i we get:

∂

∂t
(∂iyt) =

((
Yt + V1

t

)
· ∇

)
(∂iyt) +

((
∂i

(
Yt + V1

t

))
· ∇

)
yt +

+((∂iYt) · ∇)V 2
t + (Yt · ∇) (∂iV

2
t ) + ∂iV

0
t .

Multiplying both sides of the latter equality by ∂iyt in H0 we obtain

1
2
∂

∂t
‖∂iyt‖2

0 =

=
〈((

Yt + V1
t

)
· ∇

)
∂iyt, ∂iyt〉+ 〈

((
∂i

(
Yt + V1

t

))
· ∇

)
yt, ∂iyt

〉
+〈(∂iYt · ∇)V 2

t , ∂iyt〉+ 〈(Yt · ∇) ∂iV
2
t , ∂iyt〉+ 〈∂iV

0
t , ∂iyt〉.(36)

At the right-hand side of (36) the summand
〈((

Yt + V1
t

)
· ∇

)
(∂iyt), ∂iyt

〉
is known to vanish, while the summand 〈

((
∂i

(
Yt + V1

t

))
· ∇

)
yt, ∂iyt〉 admits

an upper estimate:

〈((
∂i

(
Yt + V1

t

))
· ∇

)
yt, ∂iyt

〉
≤

≤ C
∥∥∂i

(
Yt + V1

t

)∥∥
L∞

‖∇yt‖L2‖∂iyt‖L2 ≤(37)

≤ C ′
∥∥(
∂i

(
Yt + V1

t

))∥∥
L∞

‖yt‖2
H1
.

Evidently ‖((∂iYt) ‖L∞ ≤ c‖yt‖L∞ and since, by virtue of i), ‖yt‖L∞ are
bounded, then the upper estimate (37) can be changed to

〈
(
∂i

(
Yt + V1

t

)
· ∇

)
yt, ∂iyt〉 ≤ C ′′‖yt‖2

H1
.

The summand 〈(∂iYt · ∇)V 2
t , ∂iyt〉 can be estimated from above by

a‖∂iYt‖L2‖∇V 2
t ‖L∞‖∂iyt‖L2 .

As long as V 2
t is trigonometric polynomial in x we can change the latter

estimate to a′‖yt‖2
H1
. A similar upper estimate is valid for the summand

〈(Yt · ∇) (∂iV
2
t ), ∂iyt〉.

Finally 〈∂iV
0
t , ∂iyt〉 admits an upper estimate

α
(
‖∂iV

0
t ‖2

L2
+ ‖∂iyt‖2

L2

)
≤ α′ + α′′‖yt‖2

H1
.

Then we come to the di�erential inequality for ‖yt‖2
H1

denoted for brevity

by ‖yt‖2
1:

∂

∂t
‖yt‖2

1 ≤ c′ + c‖yt‖2
1,
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wherefrom by the application of the Gronwall inequality we conclude

‖yt‖2
1 ≤ ‖y0‖2

1e
ct + (c′/c)(ect − 1),

and consequently supt∈[0,T ] ‖yt‖1 ≤ b for some b > 0.
To arrive to the estimate (21) for ‖yt‖2 (given that the initial value y0

belongs to H2) we have to derivate (36) with respect to xj , arriving to a
di�erential equation for ∂j∂iy. Multiplying both parts of this equation by
∂j∂iy we obtain

∂

∂t
‖∂j∂iy‖2

0 = 〈
((
Yt + V1

t

)
· ∇

)
∂j∂iyt), ∂j∂iyt〉+ · · · .

The �rst term at the right-hand side vanishes and then the needed estimate
for ‖yt‖2

2 is derived from the estimate for ‖yt‖2
1 by application of Young and

Gronwall inequalities.
The integral estimate iii) and even a stronger "pointwise" estimate for∥∥ ∂

∂t(∂iyt)
∥∥ can be concluded from (36). Indeed∥∥∥∥ ∂∂t(∂iyt)

∥∥∥∥ ≤ C
(
‖Yt + V1

t ‖L∞‖∇∂iyt‖+ ‖∂i

(
Yt + V1

t

)
‖L∞‖∇yt‖

)
+

+C1‖yt‖1 + c2 ≤ C ′(1 + ‖yt‖0)‖yt‖2 + c′2.

8.4. Continuity with respect to relaxation metric: proof of the
Theorem 5.5. Pick an element (V̄ 0

t , V̄
1
t , V̄

2
t ) from FB and denote by ȳt

the solution of the equation

(38) ∂tȳt =
(
Ȳt · ∇

)
ȳt +

(
V̄1

t · ∇
)
ȳt +

(
Ȳt · ∇

)
V̄ 2

t + ν∆ȳt + V̄ 0
t .

Let yt be a solution of the "perturbed" equation

∂tyt = (Yt · ∇) yt +
((
V̄1

t + V1
t

)
· ∇

)
yt + (Yt · ∇)

(
V̄ 2

t + V 2
t

)
+(39)

+ν∆yt + V̄ 0
t + V 0

t .

Recall that V̄1
t is the divergence-free solution of the equation: ∇⊥V̄1

t = V̄ 1
t .

Subtracting (38) from (39) and introducing the notation

ηt = yt − ȳt, Ht = Yt − Ȳt,

we obtain the equation for ηt:

∂tηt = (Yt · ∇) ηt + (Ht · ∇) ȳt +
((
V̄1

t + V1
t

)
· ∇

)
ηt +

(
V1

t · ∇
)
ȳt +

+(Yt · ∇)V 2
t + (Ht · ∇) V̄ 2

t + ν∆ηt + V 0
t .(40)

We would like to evaluate ‖η‖0; to this end we multiply in H0 both sides
of (40) by ηt. At the left-hand side we obtain 1

2∂t‖ηt‖2
0, while at the right-

hand side the terms 〈(Yt · ∇) ηt, ηt〉 and 〈
((
V̄1

t + V1
t

)
· ∇

)
ηt, ηt〉 both vanish.

Taking into account that 〈∆ηt, ηt〉 ≤ 0 at the right-hand side, we arrive to
the inequality:

1
2
∂t‖ηt‖2

0 ≤ 〈(Ht · ∇)
(
ȳt + V̄ 2

t

)
, ηt〉+

+〈
(
V1

t · ∇
)
ȳt, ηt〉+ 〈(Yt · ∇)V 2

t , ηt〉+ 〈V 0
t , ηt〉.
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Hence

1
2
‖ητ‖2

0 ≤
1
2
‖η0‖2

0 +
∫ τ

0
〈(Ht · ∇)

(
ȳt + V̄ 2

t

)
, ηt〉dt+(41)

+
∫ τ

0

(
〈
(
V1

t · ∇
)
ȳt, ηt〉+ 〈(Yt · ∇)V 2

t , ηt〉+ 〈V 0
t , ηt〉

)
dt.

What for the �rst integrand in the right-hand side, then∣∣〈(Ht · ∇)
(
ȳt + V̄ 2

t

)
, ηt〉

∣∣ ≤
≤ c‖Ht‖1‖∇

(
ȳt + V̄ 2

t

)
‖1‖ηt‖0 ≤ c′‖ȳt + V̄ 2

t ‖2‖ηt‖2
0.

As long as V̄ 2
t are trigonometric polynomials with uniformly bounded

coe�cients and according to Theorem 5.4 ‖ȳt‖2 are equibounded, then the
latter estimate can be changed to c′′‖ηt‖2

0.
All terms of the second integrand at the right-hand side of (41) contain

"factors" V 0
t , V

1
t , V

2
t which are small in relaxation metric. To estimate this

integral one can use Lemma 5.2. Its assumptions are veri�ed as far as the
values ∫ T

0

∥∥∥∥ ddt∂i(ȳt)j

∥∥∥∥2

0

dt,

∫ T

0
‖η̇t‖2

0 dt,

∫ T

0
‖ẏt‖2

0 dt

are equibounded. Say, the value of the integral
∫ τ
0

(
〈
(
V1

t · ∇
)
ȳt, ηt

〉
dt is

small, because V1
t is small in relaxation norm, and

∫ T
0

(
d
dt (∂i(ȳt)j(ηt)j)

)2
dt

are bounded.
For any δ > 0 we can take V 0

t , V
1
t , V

2
t su�ciently small in relaxation

metric, in such a way that (41) implies

1
2
‖ητ‖2

0 ≤
1
2
‖η0‖2

0 + c′′
∫ τ

0
‖ηt‖2

0dt+ δ.

Then the smallness of ‖ηt‖0 is concluded by application of the Gronwall
inequality. �
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