99 research outputs found
Description of statistical methods and a routine for determining the parameters of a model in processing experimental results
A computer routine is suggested for selecting the optimum parameters of a theoretical model and determining the errors in them due to errors in physical measurements and for evaluating the conformity of theory with the experiment. The paper describes the specification sequence for the input data and the format of the calculation results. Sample printouts are appended
Spectral transformation in the SOFI complex for processing photographic images on the ES computer, part 1
A description is given of three programs catalogued in the form of object modules in the library of a system for processing photographic images computer. PFT is the subprogram of the multi-dimensional BPF of real-valued information, in the operative computer memory. INRECO is a subprogram-interface between the real and complex formats for representing two-dimensional spectra and images. FFT2 is a subprogram for calculating the correlation functions of the image using the previous subprograms
Defect-Related Luminescence in Undoped GaN Grown by HVPE
Hydride vapor phase epitaxy (HVPE) is used for the growth of low-defect GaN. We have grown undoped films on sapphire and investigated them using steady-state and time-resolved photoluminescence (PL). One of the dominant PL bands in high-quality GaN grown by HVPE is the green luminescence (GL) band with a maximum at 2.4 eV. This PL band can be easily recognized in time-resolved PL measurements due to its exponential decay even at low temperatures (\u3c50 K), with a characteristic lifetime of 1–2 μs. As the temperature increases from 70 K to 280 K, the PL lifetime for the GL band increases by an order of magnitude. This unusual phenomenon can be explained on the assumption that the electron-capture coefficient for the GL-related defect decreases with temperature as T −2.6
Identification of point defects in HVPE-grown GaN by steady-state and time-resolved photoluminescence
We have investigated point defects in GaN grown by HVPE by using steady-state and time-resolved photoluminescence (PL). Among the most common PL bands in this material are the red luminescence band with a maximum at 1.8 eV and a zero-phonon line (ZPL) at 2.36 eV (attributed to an unknown acceptor having an energy level 1.130 eV above the valence band), the blue luminescence band with a maximum at 2.9 eV (attributed to ZnGa), and the ultraviolet luminescence band with the main peak at 3.27 eV (related to an unknown shallow acceptor). In GaN with the highest quality, the dominant defect-related PL band at high excitation intensity is the green luminescence band with a maximum at about 2.4 eV. We attribute this band to transitions of electrons from the conduction band to the 0/+ level of the isolated CN defect. The yellow luminescence (YL) band, related to transitions via the −/0 level of the same defect, has a maximum at 2.1 eV. Another yellow luminescence band, which has similar shape but peaks at about 2.2 eV, is observed in less pure GaN samples and is attributed to the CNON complex. In semi-insulating GaN, the GL2 band with a maximum at 2.35 eV (attributed to VN) and the BL2 band with a maximum at 3.0 eV and the ZPL at 3.33 eV (attributed to a defect complex involving hydrogen) are observed. We also conclude that the gallium vacancy-related defects act as centers of nonradiative recombination
Programs for high-speed Fourier, Mellin and Fourier-Bessel transforms
Several FORTRAN program modules for performing one-dimensional and two-dimensional discrete Fourier transforms, Mellin, and Fourier-Bessel transforms are described along with programs that realize the algebra of high speed Fourier transforms on a computer. The programs can perform numerical harmonic analysis of functions, synthesize complex optical filters on a computer, and model holographic image processing methods
Fine structure of the red luminescence band in undoped GaN
Many point defects in GaN responsible for broad photoluminescence (PL) bands remain unidentified. Their presence in thick GaN layers grown by hydride vapor phase epitaxy (HVPE) detrimentally affects the material quality and may hinder the use of GaN in high-power electronic devices. One of the main PL bands in HVPE-grown GaN is the red luminescence (RL) band with a maximum at 1.8 eV. We observed the fine structure of this band with a zero-phonon line (ZPL) at 2.36 eV, which may help to identify the related defect. The shift of the ZPL with excitation intensity and the temperature-related transformation of the RL band fine structure indicate that the RL band is caused by transitions from a shallow donor (at low temperature) or from the conduction band (above 50 K) to an unknown deep acceptor having an energy level 1.130 eV above the valence band
Carbon defects as sources of the green and yellow luminescence bands in undoped GaN
In high-purity GaN grown by hydride vapor phase epitaxy, the commonly observed yellow luminescence (YL) band gives way to a green luminescence (GL) band at high excitation intensity. We propose that the GL band with a maximum at 2.4 eV is caused by transitions of electrons from the conduction band to the 0/+ level of the isolated CN defect. The YL band, related to transitions via the −/0 level of the same defect, has a maximum at 2.1 eV and can be observed only for some high-purity samples. However, in less pure GaN samples, where no GL band is observed, another YL band with a maximum at 2.2 eV dominates the photoluminescence spectrum. The latter is attributed to the CNON complex
A description of a system of programs for mathematically processing on unified series (YeS) computers photographic images of the Earth taken from spacecraft
A description of a batch of programs for the YeS-1040 computer combined into an automated system for processing photo (and video) images of the Earth's surface, taken from spacecraft, is presented. Individual programs with the detailed discussion of the algorithmic and programmatic facilities needed by the user are presented. The basic principles for assembling the system, and the control programs are included. The exchange format within whose framework the cataloging of any programs recommended for the system of processing will be activated in the future is displayed
- …