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DESCRIPTION OF STATISTICAL MZ"THODS AND A
ROUTINE FOR DETERMINING THE PARAMETERS OF
A MODEL IN PROCESSING EXPERIMENTAL RESULTS

D. A. Usikov

USSR Academy f Sciences, Institutesttute of Space Research, Moscow

The selection of the optimum parameters of a theoretical model and /2*

determination of the'errors in them due to errors in physical measurements

is an important stage in processing an experiment.' 'xperiment. `.Besides, in processing

experimental data it becomes necessary to evaluate the conformity of

theory with the experiment. The routine described in this work solves

these problems. The user wishing to process a specific experiment with

its help has only t'write a subroutine for calculating the function of

the specific model.

In compiling this routine attention was concentrated on assuring
reliability, algorithmic speed and convenience. The routine extensively

utilizes formatted printing and diagnosing possible errors in the input

data. This paper describes in detail the specification sequence for

the input data and the format of the calculation results. Necessary

information on statistics is presented in a special chapter.

The programming language is FORTRAN, and the routine has been

entered as a module in the routine library of the SOFI video display
I

processing complex.

INTRODUCTION	 /3
;r

P

The described routine is intended for processing experiments by

the method of least squares or the maximum li lxelihood method. The

class of selected functions is arbitrary, the required parameters may

enter nonli.nearly. To use the routine it is necessary to program the

function calculation block in each specific case.

''	 The result of the routine is a printout of a set of tables;
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. The optimum values of the parameters of the model;

2. A covariance matrix of parameter errors;

3. The theoretical curve optimally describing the experiment;

4. The minimum statistical sum, i.e., the sum of the squares of

the differences betVlleen the experimental and theoretical values of the

functions calculcat`ed for the best choice of parameters.

Acca rrding to the chi-square criterion, the value of the minimum

statistical sum makes it possible to select competing models as well

as to determine the degree of correspondence of the model and the

experiment.

Chapter I. ACCESS TO THE ROUTINE

Sec. 1. Data Input

The experiment is processed by the method of least.squares. The

sum of the errors (statistical sum) is minimized:

Z .	 I ) - ,-r	 k))

2

where M is the number of experiments; Z i is the coordinate of the

i-th measurement, for'examn e, the instant, length, etc.; f E (Z i) is

^`the experimentally C ained`values at points Z i ; fT(Zi ,x) is the

theoretically predicted value at point Z i ; X is the vector of the

selected parameters of theory. We denote the dimension of vector X

as N(N dimX). of is the error of the i-th experiment (one standard

error).

The routine looks for the values of X at which the statistical sum

(1) is minimal. The accuracy with which the minimum is sought is givenk

	

	
by.a special parameter related to the statistical nature of the problem.

Determination of the parameter is described in Chapter II. It is

al6sumed that the statistical sum (1) has one minimum. If there are

several minima, a looa1 minimum is determined, depending on the initial

approximation of the parameters.

2
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in the description of the quantities that follows, the notation

employed corresponds to the identifiers in the routine. The quantities

are entered in the same sequence as they are described below.

Quantities Entered Into the Main Routine:

N - dimension of the space of the X parameters. Format 16. Restric-

tion, N 420.

IPE - printout label. IPE = 0 - normal printout mode. IPE - 1 - test

printout,1pode. Format 16.

Quantities Entered by ENEXPE Subroutine:

M number of test points. Format 16. Restriction, M:5-400.

Z(M) - array of M numbers - measuremen'c'coordinates. Format 5E16.7.

EXPE(M) - in notation of (1) 	 fE (Zi)	 array of experimental values.
Format 5E16-7.

VEXPE(M) - in notation of (1) - vl - array of experimental errors.

Format 5 E16.7.

Quantities Entered by SPOINT Subroutine:

X(N) - array of parameter input values„ The closer the input parameters

approach the optimum values the faster, in general, is the minimum

, found. Format 5E16.7.	 /5
AVD(N)..- array of input values of parameter errors. These quantities

are required by the routine for the initial selection of the gate

circuit on which the firstand second derivatives are calculates.

The quantities are subsequently modified by the routine as the work

proceeds	 It is recommended to tale AVD(i) ^ 0.1X(i), i.e., take 	 !	 '
the errors at approximately 10% "of the input values of the respective

parameters.
Attention: AVD (1) should not be taken equal to zero! Format 5E16.7.

MARK (N) - qualifying array. If MARI)(i) = 0 the given parameter varies.

If MARK(i) = 1 the given parameter is reinforced and taken equal to

j	 the input value of Xfi). Format 7211.

/	
3



Quanti,ties' Entered Into the Main Routine:

EPS - accuracy of determination of the minimum,. EPS is usually taken
equal to 0.1. The precise definition of EPS is given in Chapter II,
Format E16.7.

Sec. 2. Printout of Results

Below is presented the printout sequence of results for the case
1

IPE = 0, i.e., when a test"`..,ri.ntout is not envisaged (see Sec. 1) .
We --:Ghall illustrate the routine printout with a --oncrete example.

The heading is printed indicatinq the model employed. 	 This is
followed by the input data: the EXPE(M) experiment array, the array

of test errors VEXPE(M), the coordinates of the test points Z(M):

EXPERIMENT APPROXIMATED 8,Y I	 ORDER POLYNOMTAL

x^1 ? +XC21 +:^+X t3^°7*#Z+X<G)+r Z^Mi^i...

i
;LPea l ,-
	 TEST PRINTOUT	

YES^ry	 E
k	

L	 A U EPOINT NUMBER	 EXPERIMENTAL V A LUE
C	 1$1919	 01
G'19	 mome	 013{	

4	
0.3n99999E 01

4	 0.39	 n000 E 	01
I	 6	 G•Sn	 9991E	 01

.5196006E 01
G

#	 :74999p99E 001
99fiE 41-i . 9 4	 r,0 *...kc

0

EXPERIMENT ERROR	 COORDINATE
0.QQ9999;̂t8A02 ,

	0, 1 000000	 0
0,9999998E"0	 0.	 0000001 01
0.9999998 E (J'2	 0 . 3000000	 Al009999998Ee02	 0.4000000E	 01
0 . 9999998 Eeop	 O+SO00000E 01
0.9999998E"02	 0-6000000E 01
0.9999 0 98E»02 	 0,.?.900000E 010 k9999998E V 02	 - o.a0000tf0 E 	 01
0.9999998E"02	 06:9^0000OLE
0.9999998E*.D2	 0.1000000E ;0

This iD followed by the input values of the parameters XO and qqF
the approximate errors of the parameters AVD(i):

C'

INPUT PARAMETER. VALUE	 APPROXIMATE PARAMETER ERROR
9	 0.0	 0.1004000E	 Oti
l	 -0..0	 0'1000600E	 01r,

4
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Some parameters may not vAry (which is indicated by units in	 A
thekARK(i) array), and the routine therefore transfers to the interna'A
list, which gives only the varied parameters. Correspondence between
external and interwtl nume-'ation is indicated in the following table:

DATA PRINTOUT EVERYWHERE ACCORDING TO INTERNAL NUMERATION
CORRESPONDENCE OF PARAMETERS

INTERNAL PARAMETERS EXTERNAL PARAMETERS
:2

Next the BPS 'value is stated:

ACCURACY 05 DETERMINATION OF MINIMUM
SCALE ORE CHI-SQUARE DISPERSION

With this the input data printout ends and the routine transfers
to calculation:

/7
T EORET'ICAL CURVE DEMONSTRATION

AL VALUEEXPERIMUNT
COMPARISON'WITH EXPERIMENT
(THEORY MIN US EXPERIMEN T DIVIDED BY•TEST,ERROR

	

POINJ_ . t	 1	 1	 2	 1	 31

0•0	 1 O.Woff 01 1 :0.1990 03

	

4	 0.0	 1	 0 ' 3 90

	

3 1	 6.0	 1	 0. 3 ^10	 01 1	 0.3010	 03 1	
f01 1 -0.3990 03 1 

0 . 0	 1 0.5010 01 1 'o-5010 E 03 1
4.	 0.0	 7	 0:599OF 01 1 -0 . 5990 f 03 1

0. 0	 1 o 7olOF 01 1 -o.7010E 03 1
0.0	 1 0.79900 01 1  0:7990E 03 1

	

9	 04 0	 7 0.9010e 01 1-0 , 9011E	 - 03 1	 OR,'GINAL

	

10	 0.0	 a 0 .9990E 01 1 .0.9990E 0 3 1
OF POOR QIJALln ^"

FIRST INPUT
5'4 -	 -s-TATISTICAL SUM14$

	

PARXM 'ETER'	 Al A_ '" TER VALUE	 LAST RASE,
0 3012007 , 6 *.7 00

0. 

A 0: 4654292E-01

As the statistical sum decreases the pro4ram prints out
intermediate results:

ORIGINAL-INPUT FOLLOrWING'NEWTON ^-.METHOD STEP
STATISTICAL SUM	 OF POOR QUAL

PARAM^ETER	 0L. 4A^^'SBkff_03
2	 0.9993422E 00	 0.7764726''x•'64

17	 NUMBER OF ACCESSES TO.STATSUM BLOCK

5
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When the optimum value of the parameters has been determined

the table of theoretical and experimental values is printed out, after

which the routine gives the minimum statistical sum, the Fisher

matrices, and the covariance and correlation-matrices:

THEORETICAL CURVE DEMONSTRATION
EXPERIMENTAL VALUE
COMPARISON WITH EXPERIMENT
(THEORY MINUS EXPERIMENT DIVIDED BY r Ijil l"gB O

.r ._., 	 ► tsw+wwM::w.t.rw y^wwr.....rrrr*wWfawa►► ^.rs^'r,..'rr+•tl+s. ^.swMwe 	 ur

POINT'I	 I	 32'	 1
+A'•wwM',.«•r..r^.wr,.,*,rrwwsrg.rMwwwsw^rrr^ ►► s:*.^wkr..r.rrl•w^swn.r^tsrwar...r

T	 1 I	 0. 10^is E t11 1	 0,1010 	 01 1 W 0 47273E 00 g
L	 2 1	 0.2°002 !•1 Y	 O.rt990E 0! i	 0.1212	 01 I

3 1 0-3ro2 01 1 0.3010 E 01 1 "0 . 8486 00 1
4	 0,4AOi 01 1 0,3990E 01 I 0,109; E 1 1
5	 0.5000 0i 1	 0.5010E 01 2	 0 I

X	 6	 0.6106E 0j 1 0.5990E 01 1 0 .9696 1 00 I
7 1	 0.6999 E 01 1	 o,71 0106 01 1 "0-109	 01 1
8 1	 0,799RE i:1 7 0.7990E 01 1 0.84b E 00 1
9 I 0.15990E 01 1 0.90101 01 1 "0,1212 E 01 I

t o I 0.9997E u1 I 0,9990E 01 I 0.7273E 00 1
yMM +e, craw.«. .w,••s.}^ti. w^..r^r.. r.•1^rnwr+uw..ry^ • r•. ► srwrrrr,..rrw ••. #'! wa.^war.^

MINIMUM SEARCH END
0.4948243E n1	 STATISTICAL SUM

j^	 PARAMETER	 PARAMJjJR VALUE	 L jkS^T77* 7Er63

2	 0,999342 ?E Ott	 G.7764726E-04

24 T NUMBER OF ACCESSES TO STATSUM BLOCK

FISHER MATRIX
A 1 1 a 0.9276250E 0S
A 1 ?s 0 • S1 3p 279E ^,6
14° 2	 ?= 6 . 3S'Sa69 4 6 07

F`

.COVARIANCE MATRIX,
1	 tic 0 . 507 9759Eef,4

6	 1,o , 72A0?SIEw{.S
C 2 ^= 0.13? 39 E *i:5

CORRELATION MATRIX

K 1	 ,= o.1on0 A 00E cl
K 1	 ?: no 	 Co	

ff.N 2 ?= 0 ► 10m0400E .1

The routine cycle is complete. When the calcu i,s.:;:ion'ends control
is transferred to the start; and the routine requires input of a new
set of data.

Sec. 3. Function Calculation Subroutine

The function calcuilat4,6h subroutine FUN (i, Zi, N, X, FT) is the

6
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only subroutine which has to be changed as applied to the solution

of a specific problem. The subroutine provides for calculating the

function value for the given parameter values of model X(N) at point

Zi . For example, for a linear model the function is calculated apeor-

ding to the formula FT = X(l) + X (2)xZi + X (3)xZit2 +	 The FUN

subroutine operates in two modes. The respective mode specifies the
value of the identifier i. At i 0, the subroutine does not perform.

calculations and only prints out the heading

EXPERIMENT APPROXIMATED BY 1 ORDER POLYNOMIAL

At i = 1, calculation of the function takes place.

The formal parameter N in the subroutine access specifies the
number of parameters of the model (varying or nonvarying in sum)

The parameters i, Zi, N, Z enter the FUN subroutine from the main
	

/9

routine, and the value of the function FT is transmitted back.

At points lying far from the minimum the search mode may generate

values of the X parameters that are unusable in FUN subroutine calcu-

lations. To avoid such a situation a special message contingency is
provided for. Before starting FUN subrouAine calculations it is

necessary to check whether the incoming values of the X parameter

are permissible. If they have gone beyond the limit of permissible

values the calculation is cancelled and FT is assigned the value 1018.

When the pilot routine receives PT equal to 10 18 it takes steps to

enter the domain of permissible values'of the X parameters.

There are different ways of determining the permissibility of

the X parameters. 1) X is verified prior to the calculation by means

of a test consisting of a set of inequalities. 2) The permissibility

of X is verified during ±.he calculations. 3) A special FORTRAN device

is employed: the possibility of transferring control to a specified

place in the subroutine-.

7
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Sec. 4. Procedure for Recalling Subroutine from SOFI Librar

The subroutines are cataloged,in the object module ;library of

the SOFI complex (1). The routine is generated in the following way;

/ JOB NAME

ff PAUSE ASSGN SYSRLE,X'190 ' disk 102
jf OPTION LINK

EXEC FFRRTRAN

CALL MODNEU

STOP

END

SUBROUTINE FUN(I,ZI,N,Y.,FT) 	 10'

DIMENSION X (20)

CALL FUN ... (x, Z I , N, X, FT)

i(	 RETURN

END

SUBROUTUR-' ,'kN... (I,ZIrN,X I FT)

=subroutine bo4y

EXEC LNKEDT

ff EXEC

Finputdata

The MODNEU subroutine contains,the body of the main routine (texts

of the routine in FORTRAN are given in the Appendix). In FUN are

cataloged subroutines for calculating different functions. At present,

the subroutines FUNPOL and FUNEXP, which calculate polynomials of

the Nth order and the sum of exponents, respectively, have been cataloged.
A special FUN subroutine is written for each of the calculated sub-
routines. The FUN subroutine transfers control from general access

of the main MODNEU routine to the FUN function to the concrete FUN...

subroutine.

8



If A calculation of the same type is performed for many variants
according to some FUN... subroutine, an absolute model can be generated

and put into the SOPI complex according to the procedures cited in

work [1]. Thus, for example, at number 21000 in the SOFI complex there

is located a routine with a FUNPOL subroutine, and at number 21001 in

the absolute library of the SOFT complex is a routine with a FUNEXP
subtoutine.	 Al

t,

Chapter II. ACCURACY OF DETERMINATION OF MODEL PARAMETERS

Sec. S. Normal; Limit of Likelihood Functions

in this chapter are described statistical methods of processing

experiments involving normal approximations of likelihood functions.

The domain of applicability of normal descriptions of an experiment

is considered at the end of the chapter.

The likelihood function 1(T/E) of a model T with .respect to a

given experiment E is determined according to Hayes equation:

f p( IT) P(r) dr	 (2)

Here, P(E/TT) is the probability density of the realization of the
experiment E, provided the parameters of the model are T; P(T) is
thew priori probability density of the parameters of the model.
The likelihood function is sometimes called the "a posteriori." proba-
bility density of the model parameters, and P(T) is the "a priori"
density,

t
It is assumed that for sufficiently representative experiments

variations of the a priori density P(T) are insignificant in comparison
with the peak of the likelihood function at the maximum point 1(T /E)
In these assumptions it is proved that, as the number of experiments

increases, the function 1(T/E) tends towards a normal distribution

9
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It is not hard to see

equivalent. Determination

equations (6) and (7) natu

R	 (7)

that defir.tions (4) , (5) and (6) , (7) are
of the parameters 'X0 and B (or A) from
rally involves numerical methods of looking

L p. 2173. A multidimensional normal distribution has the forms

1A
-	 -X•

.'^ (3)

where JAI is the determinant of A; XTAX	
jAijXiXj n = 

dimX is the
dimension of the parameter space.

The watrix A is called the "information" matrix (or the Fisher	 412

matrix) of the experiment; its inverse B covX = A -1 is the covariance
matrix. Matrices A and B are symmetrical and positively determinate,

i. e. , XTAX 0 for all X.

The normal distribution is given by two parameters: the mean value

X  - fXP (X) dX

and the covariance matrix

(4)

(5)B = covX	 PX - X0 (X X0 ) TP (X)dX.

it is thus assumed that the experiment is fully defined if X0

and B are known. Calculation of X 0 and B according to equationg (4)
and (5) is inconvenient algorithmically, and differential methods are

usually employed. The mean values of X 0 are usually found from the
maximum condition of the likelihood function:

`'	 &I PIX)

The Fisher matrix is obtained as the second derivative of the logarithm

of the likelihood function;

10
E
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for the maximum of the likelihood function. This relationship will be

investigated in greater detail in Chapter III in describing the

algorithm.

Description of an experiment by stating the parameters X  and B

is called "normal" description of the experiment. Normal description

forms a sufficient statistic for any linear combination of input

parameters. Let us determine

Y	 KX,	 (8)

where X and Y are vectors, dimY = r, dimX n, and K is the matrix	 /13
of the dimension coefficient rxn. If vector X is distributed

normally with the parameters X O , B, then Y is also distributed normal-

ly with the parameters:

YO = KXO , covY = KBKT .	 (9)

The relationships (9) are also frequently employed in the case

of a nonlinear relationship Y = f(X), the matrix K being determined

as the factors of the linear term in a Taylor expansion of the function
f(X) at point XO:

(10)

Sec. 6. Distribution of the Statistical Sum. The Chi-Square Criterion

The most common case is when the errors of an experiment are

distributed according to a normal law. The function P-(E/T) (see

equation' (2)) has the form:

P(E/T)	 c exp(-35fE - fT (X))
T
 ^(fE - fT (X)) •	 (11)

Here, c is the normalization constant; t is the covariance matrix

of the errors of the experiment;

f	 ^3^
is a vector compounded of experimentally measured

values;

()9M 17
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X
,4, is a vector compounded of the theoretical values

-i

Rxt	 of the function in the i-th experiment, when the

values of the theoretical parameters are X

M is the number of experimental points.

Note that the X parameters in the model fT (X) may enter nonlinea;rly,

The function

-1>	 /- (,X))

is called the "statistical sum" of the experiment. Function (12)

does not differ essentially from the function (l) introduced before.

Function (12) generalizes (1) for the case of dependent experiments.

Expanding S(X) in a Taylor series of X in the neighborhood of X0

and neglecting terms higher than the second order of smallness, we
arrive at the normal description of the experiment:

S (X)	 S (X 0 ) + (x - X 0 ) TVs (X 0 ) + (X - x 0 ) TA (X 0 ) (X — xo ) ,	 (13)

Here, 3'S(X O ) is the gradient vector

PX—

S

+	 ^S

2

WA is the matrix of second derivatives:` A i . = ^
a	

xi xj

It is assumed that S{X) has one extrenuio. Point X
0 

is found
from the condition

ADS (X 0 ) = 0.	 (14)

In particular, if the parameters enter the model linearly, then

fT{X)	 rx,	 (15)
where F is the dimension matrix dimf x dimX (M x N). In a linear model

(12)



o	 r

^rl
A = FT I, F.

The linearization procedure makes it possible to formulate

a very convenient accuracy criterion for numerical methods of solving

sets of equations. Suppose we have to solve a set of equations

F(X1,X2, ... ,XN )	 0	 i = 1,2,...,N,	 (17)

or in vector notation, F(X)X = 0.

(16)

Specific requirements are imposed on,the accuracy of determination

of the parameters, namely,

	

•'3 	 l^^r ^ xt*O j?

i.e., the approximate solutions of X should differ from the exact X

by no more than a specified quantity characterized by the given error.

More precisely, condition ( 18) is equivalent to the requirement that

the deviations of the approximate values must lie within the ellipsoid

given by equation (18). The parameter z states the degree of approxi-

mation to the exact solution. If it is necessary to take into account

the paired relationships of the accuracies, then condition (18) is

replace by the condition

(X - XO) T (X - XO)

where is Fis a positively given definite M atrix,

	

X ^	 X •	 ^;

	

1	 10
X	

X0

	

XN	
XNO)j,

The solution of equation (17) is apparently equivalent to the

solution of the problem of finding the minimums

N
min ; F  (X ) = min F F.	 (21)

i	 X	 1	 X

This procedure, which is extensively employed in numerical methods,

makes it possible to solve the initial problem by developed methods of

13



looking for the extremum of a function of many variables. However,

if

	

FTF€ 9	 (22)
is adopted,-,as a c&edition for attaining the required accuracy, the

values of X which satisfy (22) will not, generally speaking, satisfy 	 /16

the inequality (19). Let us now show that, proceeding from the

inequality (19), we can ,formulate an equivalent inequality in terms

of F. To the accuracy of the linear term, we have
a

F(X) = F(X D ) + K(X ' X'i	 (23)

where
a

ax. x11 = 
ĵ Xij X=XO

By definition, F(X^)	 p, hence (23) involves only the	 linear

term

F 	 = K(X - X 0 ) .	 (24)

If solution (17) is unique, then K can be inverted, and there

exists a matrix K- 1 . Substituting X - X 0 = K -1F into (19), we obtain

(K F)T^C-1F y

or

4	 FT (K Z KT) - 1 F f̂  ' (2S)

Matrix KEKT is positively definite, because E is positively

definite. Matrix (K i KT) 1 is also positively definite. Finally,
the solution of equation (17) is equivalent to the solution of the

1
problem in finding the minimum:

min FT (KE KT ) -1F,	 (26)
X

and the condition' of attaining the minimum (X X 0 )T l(X XD) is
equivalent to the condition FT (Kt KT) -1F

14
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Let us return to an examination of the properties of the

statistical sum (12). Since it is impossible to find such an XO

that (14) would vanish by numerical methods, it is necessary to

formulate a criterion that would characterize the degree of approx-

imation to the exact solution of the extremum problem. It is natural

	

to require that the numerical method should be the more precise the	 Z17
k

	

	 higher the accuracy of the experiment. In other words, the accuracy

of the search for the extremum should be related to the covariance

error matrix. We recall that Xo is the evaluation of the parameters
of the model. The covariance matrix B = A-1 expre.^ases the probability

of deviation of the true value of the parameters Xtrue from the value
of XO obtained from the condition of the likelihood function maximum.

The main statistical criteria are linked with the distribution

instants of the statistical sum (12). It is not hard to show that

the statistical sum possesses .a chi-square distribution,. provided

f(X) is linearly dependent on X. The mean value S =M-N the second

central instant.

ow

2

At M - N of the order of 10 or ,more, the chi-square distribution

close to its maximum nont can be considered close to normal. Therefore,

	

-,t	 -
if JS(X 0

) - M 2 N' 4M 
2 N^ then the chi-square criterion is satisfied

to a 68% probability. With the help of this criterion we can judge

of the correspondence of theory and experiment, for example, corres-

pondence of the experiment errorsiF lix;dicated by the experimenter

to the true experiment errors. For example, if it seems certain that

the experiment is correctlydescribed, theoretically, while as a result

	

of the search for X O 	X^)it has been found that S( 	 S -,a , this can be

interpreted as indicating that the experiment errors have been assumed

too high.

According to the chi-square criterion, the solution of equation

(14) is considered satisfactory if

	

(XO	 X) TA 1 (XO - 
X)§Ea «	(27)

E 1Z

OF pots;l QJALITY	
15



a	 .

Here, X is the

expressing the

the confidence

higher. Usual

^J

approximate valueof No a is a certain constant
degree of confidence. At 0 = 1, as noted before.,

is 68%. At 4> 1, the confidence is accordingly

LX # is accepted equal, to 0.1

18

Since X0 is not known, criterion (27) is not constructive but,

taking into account that S = A(X X 0 ), we can obtain from (27)

an easily computable criterion:

	

^ V STA
-1 

D S *A,!I
	

(28)

The gradient D S is computed at point X in the search for X  analy-

tieally, if the explicit form fT (X) is known, but more often approxi-

mately. The matrix of second derivatives is a lso calculated in the
course of the computations. Criterion (28) is especially convenient

in the Newton methodbecause calculation of v S and A are essential

described further on

"Sec. 7. Condition for Ending the Minimization Process

The experimenter often does not know the absolute va=lues of

the experimental errors mi l. All he knows is their relative course

from experiment to experiment. Consequently, the quantity o in (28)

is indeterminate. In that case we can make use of the fact that

& =4S  and, dividing both parts of (28) byq S , make use of the
criterion

ST A-1 vS.S 4- S.	 (29)

The unknown quantity 5 in (29) is substituted by the current

statistical sum S(X)

	

STA-1 I' S!t i' is.	 (30)

Criterion (30) is, obviously, weaker than (29) at S-(X)' $ S. However,

in practice calculations show that in the overwhelming number of cases

the quantity h VS 
T A-

 
1 "O S when it is far away from X O increases fastd r.

than VS, and criterion (30) does not lead to false stopping far

from the extremum point. The criterion of stopping the minimization

_
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process (3.0) is employed in the program described further on.

Sec. 8. Statistical DescriRtion of Parameters of "Poorly Con- 	 /S9

ditioned" Models and Experiments

There are at least- two cases when normal description of an

experiment is unsatisfactory. The first, which is frequently en-

countered in practice, is when it is impossible to reconstruct the

parameters of the model from the experiment owing to low accuracy

or inadequate statistic of the experiment. Such a situation arises,

for example, in attempting to determine a great number of parameters

of the model from a small number of experiments. The problem of

describing the experiment that arises in this case will be discussed

in more detail further on.

The second case, which is in a sense diametrically opposite to

the first, is encountered;in processing a great number of highly

accurate Experiments. In this case it i ts usually found that either

the model does not adequately describe the experiment or that the

experiment errors are stated imprecisely. For exampler the correlation
between individual measurementsacquire major significance, or small.
systemat.c.experimental errors become decisive, i.e., the "trifles"

usually ignoredj but which 'in rash statistics restrict the attainable

accuracy of reconstruction of parameters. This case can be detected

from the chi-square criterion. When the models of theory and expe-

riment differ from the real-life experiment the minimum of the
statistical sum differs substantially from the theoretical value,

which can be a "trouble" indicator. The situation is described in

detail in work [3].

We shall assume that the model is accurate,and the errors of

the experiment are given correctly. Let us consider:; ,the effect of

the nonlinearity of function f (X), .According to Bayes' approach (2],

confidence that the Aheoretical parameters lie within the X domain



X2

X2o

where l(T/E) is the likelihood function of the experiment (see

equation (2)) .

If the likelihood function is normal, then .to calculate the
integral (31) over any domain X, it is sufficient to know the

normal distribution parameters; the vector/;of means and the cov ariance

matrix. These parameters form a Sufficient satatistic. But if the

likelihood funct ;̂ on is not expressed by a normal distribution a

situation arises which is conveniently illustrated with the help

of curves of the levels of the likelihood fumction;

Xf

X10
X 1 and X2 are parameters of the model. Suppose that the likelihood

function has only one maximum, and X 10 and X20 are the parameters at

which it attains that maximum. The curves show the solutions

1(X1X2 )	 const for various constants, The level lines always form

ellipses in the neighborhood of the maximum, but farther away from

the maximum point, when the model f(X) is h6 iftlinear, they are no Longer
ellipses. It is not hard to , . , show,that, for each confidence D there

is such a d that in integrating over the X domain defined by the'
condition

1(X) . d,	 (.32)

=i (x) dX.

Usually some meaningful confidence is assigned, for example, 0.68	 /21

or 0.99

Let us denote a normal likelihood function with parameters X0

l8

I
a

3	 9

1



-and 8 as 1(X) , The fundamental thesis of normal description of
t'^ 'Ilexperamert is formulated as follows. if

^', (X) dX	 ] (X)dX
ex	 1 	 (33)

X

where D is a significant confidence, and the -integration domain

is found according to (32), normal description of the experiment is

assumed satisfactory..:

In practice condition (33) can be obtained by the Monte Carlo

method. The integral, fl (X) dX in (33) can be determined according to
the formula

1(X) dX =	 1 xj 1(X) dX.	 (34)

Xi is played according to the density of I(X) (an algorithm for

modelling a
l 

nnormal distribution is described in `,h6rk C11] )', The
quantities 4

-,, 
which are an evaluation of the integral (34) ,

are are introduced into the summator.

Chapter III. DESCRIPTION'OF THE ALGORITHM

Sec. 9. The Modified Newton Method

The main task of the experiment processing algorithm is to find
the minimum of the statistical sum S(X) (12). The modified Newton

method [4, 5, 6] used for this is based on local, quadratic interpola-

tion. Suppose the statistical sum depends upon the parameters in

the following way:

S(X) 0
 + (V ' S)T (X - X

0
) + h(X - X ) TA(X -' ?gip)	 (35)

Here, XD is the only minimum point,- and the gradient VS is taken at

point X 0 , i.e., it is zero:

S (X) - S p =+ 31 (X - X
0

) T'^'(X - X O )	 (36)

19
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We take the gradient of both. sides of (36)

9 S (X) = A (X - X 0 ) .	 (37)

	

We multiply both sides of (37) by A 	 obtain the formula of
the Newton algorithm;

s
4	 XD = X	 A 1 d S.	 (38)
A

If the representation S(X) (35) is exact, then the minimum point XQ

is found, starting from point X, in one step according to equation
(38). Besides the Newton Method, the minimum can be found in a finite
number of steps by means of the algorithm of the conjugated gradient

method [7, 81 . The simple method of gradients, or quickest descent,
does not generally speaking, converge at X  in a finite number of
steps [4].

If the expansion (35)is not precise, we may find -that the function
at the new point after a step by the Newton method is greater than
in the preceding point:

S (X - A-1 vs) > S (X) ,	 (39)
To avoid such a situation and assure that the minimization process
yields a monotonous decrease of function 5(X), equation (38) is
modified:

F

Xo = X - s A-1 vs.	 (44)

If the simple Newton method fails to work on some stop, a is selectEd
in such a way that

S (X -	 A-1 VS) < S (X) ,	 (41)
I

I
'."his device is known as the "modified" Newton method.

i
Sec. 10. Internal Scaling

it is well known that a programmer, besides selecting a good
a

20 tl!



algorithm, should take account of the specific features of computers.
Algorithms are reliable and sufficiently universal only when account
is taketi of cases going beyond the machine's digital grid. One of the
methods of avoiding overflow during calculation is described in Sec, 3.

Here we shall exa4ne scali:1,ig - as related to the fact that the theory
parameters X can be expressed in arbitrary physical units.

The scale adopted for each variable X i is the evaluation of the
error, or more precisely, the quantity;

Vi	 ^2s	 (42)
^YAj

This device makes it possible to make all the variables Xi dimension-
less. The more precisely the quantity Xi is known the larger its
value in the dimensionless form (42). The scales of 1 are verified
in each step of the Newton method. The transfer to the true measure-
ment units is carried'6ut at the end of the calculation, that is, after
the minimum has been found.

Sec. 11. Block Diagram of the Routine

Print heading. Subroutine FUN(O

Load arrays of initial data about experiment,
Subroutine ENEXpE.

Load input theory values X.
Subroutine POINT

Compute input scale s.

Subroutine EAVD.

21
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Count Q S, seconj derivative
matrices A.	 - S

Count statistical sum.	 Subroutine FISHER.

Subroutine $TAT. Matrix A access.
dsubroutine INVERS.

Count function of s

model:

Subroutine FUN	 Obtain new point: X _ Xi^l- A~ YS

Main routine..

End	 End count check

cn„n4-	 Main. routine.

.Process results.	
Continue count.

Subroutine INFORM, _	 S (Xi ) < S (Xi-1)
R EZALT	 ^.^.,...n_...

ev {Xi )	 ,^ f 1ii^1)

Transfi6r from to
_ l	Onedimensional minimization

vector a A Q Sve	
Subroutine ODM

Subroutine STATAL.	 .

The routine and subroutine texts are presented in the Appendix.

The symmetric matrix inversion subroutine was taken from the col-

lection of algorithms [9],- algorithm N. 66b, and translated into

FORTRAN.

Sec. 12. Al orithm of Approximate  Calculation of Gradients and matriA
of Second Derivatives

To reduce the user's preparatory work to the minimum, the routine

is so devised that it does not require special programming of the

first and second derivatives of the function with respect to the

parameters of the model. These quantities are found in the_FISHER

subroutine by forming finite differences.
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The following formula is used to compute the gradient:



, X	 'dX

The second derivatives are calculated this wry:

The problem of selecting the base A Xi is resolved by taking

as & Xi the evaluations of the parameter errors (42).

Sec. 13. The Algorithm of One -Dimensional Minimization

in passing from calculations by the Newton method to the Modified

method it is necessary to determine the minimum of function S(X aA-IOS)

as a function of the parameter a 	 The algorithm of the corresponding

one-dimensional, minimization is constructed as follows. By the time

of reference to subroutine ODM the values of the function SW are known

at two points a.:

1) S 2 (s2 } = 0) = S (X ) i

2) S3 ( a 3	 1) = S (X	 A-1 v S).

if Sl (al -1) < S( 2 ) , a new point

^1 
(L2

 , al ) 2	
(
43)

is chosen. if S(a) c Sl (o^ ), the points are redes;gnated, which

Cahn be written using ALGOL notation:

a2

and theroutine transfers, to executing the operator (43) ,
23
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This occurs until $( a ) > $(&I).  The redesignation occurs: 	 26

•, dz	 d^ # = o f 	c^tr	 d

The aggregate of points all e2o a 3 such tat S (a,) > S (a2 1 , S ( 3) > S (*2)
is called "canonical".

After obtaining the canonical triplet...f numbers the algorithm

transfers to looking for the extremum by the quadratic interpolation

method according to three points. The minimum point a is determined
from the formula

a, a2 + aaj
where

G,	 It rlt ' aej

a, = s (ae, -1

It is not hard to show that point a. always lies within the

interval(*, < a. < aS) From the aggegate of four points a, al l a 2 ,a 3,
S, sill s 2P S S,, three such points * ,r^Pr3,Sj, S2, S3 are selected
so that the requirement.l5r<r, SSl, S2 <S3, The canonical triplet
thus obtained is used to campute'the next approximation of a according to

the procedure described above. The condition for halting the one-dimensional



The described algorithm is highly effective. As numerous	 Z17

calculations show, the average number of selections of canonical

triplets of points is about five,

Sec. 14. Drawback:; ^,of the Algorithm of the Modified Newton Method,

The Gradient Line Method,

Formula X0 = X A- 1V Sr on which the Newton method is based,

'i:s obtained from the condition V S(X 0)= 0. However, the condition is

satisfied not only,by the minimum points, but by the saddle points as

well. If in the iteration pr..00ess point X approaches such a saddle

point the direction A-1 VS will point: to the saddle point. In some
configurations of point X, going away from the saddle point with the

help of the one-dimensional minimization process may require a lot

of calculations. Let us explain this with the example of two variables,

Xl and X 2 . Suppose X = 0 is a saddle point

X2

.The lines of level S(X) = const are marked with arrows indicating

the direction of increase of function SM. if point X is located in

the octants (X2 > 0; Xl ' 0) or (X 2 -< 0; X1 > 0) , the direction of

one--dimensional minimization is towards point X 0 and the X itera-

tion will remain close to the saddle point as long as the next point

does not move to octants (X1 ^► 0; X2 -< 0) or (Xi -C. 0, X2 -< 0) as a

result of errors in the computation. The greater the number of
	

/2a

variables the higher the probability of X approaching the domain

of the saddle point. To get out of the saddle point the routine

must carry out many iterations, which is precisely the principal

2.5

4

XI
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drawback of the modified Netwon method. Work 5] suggests ways of
preventing X from occurring in the saddle point domain. The idea
of the method is for matrix A, which is not positively determinate
in the saddle point, to be replaced by a positively determinate
matrix, for example, A* = (ATA) . Matrix A can also be reduced to

diagonal form by similarity transformation, and all negative elements

be substituted by positive ones. Work [61 presents the results of

test computations which show that substantial acceleration of the

operation of the algorithm can be achieved in this way. It is worth

noting in passing that an algorithm in which the statistical sum is

in the linear approximation (16) always has a positively definite

matrix. This, apparently, explains tie relatively high effectiveness

of this method.

The second shortcoming of,;',the modified Newton method is due to

the need to invert the A matrix. If two parameters of a theory cor-
relate strongly, or if the number of experiments is smaller than

the number of parameters of the theory, inversion of the A matrix may
prove difficult. In.general, the following device can be employed:
instead of the A matrix obtain an allied matrix of A*, i.e,, a matrix

made of algebraic complements Aik , and compute the determinant A

separately. The structure of the allied matrix. is:

AEI A21 •.° An!

Al2 A22 sew A n2

Ann A2n	 A nA

An allied matrix always exists. it is related to the inverse matrix
by the -°formula A* -= A-1 N . The direction of A-1 

V S=	

/29
will, apparently	 T

coincide with the direction of A*`7S.

The two mentioned shortcomings can be overcome by,further modifying

the Newton method. In particular, in the following version of the

described routine it is suggested toc:use a now algorithm of minimi-

nation along the gradient line, which is also based on local quadratic

26
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approximation of the function.. 	 The idea of the algorithm is to

proceed from the given point X along the gradient sine and thus

find the one-dimensional minimum. 	 Moving along the gradient line,

unlike moving in the direction of the gradient, makes it possible

to attain the minimum in a finite number of arithmetical operations.

The path of motion is described by the equation:

a t	 P s-,	 (44)
t

for the initial condition X(0) = Xin .	 t is the parameter.	 Since
VS = A (X - X 0 ) , from (44) we obtain the equation

.. if:

which has the solution:

_	 At	 -1
X (t) __ Xin +	 (e	 - I)A	 V S 

(X in ) '	 (46)
a
t;

At t	 0, X(0)lin.	 If the A matrix is positively definite,
then X(-00) = Xin - A	 7 S, which coincides with expression (38)
for X0 obtained by the Newton method.	 Thus, the parametero^ used
in one-dimensional minimization of the modified Newton Zethod_,

X (^) = Xin - ^, A 'V S (X
'," ) 

, is replaced by the matrix eAT _ I.

The algorithm based on equation (46) does not require inversion a4
of the matrix A. Indeed, writing eA T in the form of a Taylor series,

we obtain from (46)	 /30

_	 ORIGINAL	 "AGE ^'	 ( 4 71X (t)	 Xin + tE (t) P S (X	
ORIGINAL

OF POOR QUAuYs-^

the notation

A 2 1
f2

is introduced.	 To compute the matrix E(t) we can use an algorithm

!	 based on application of the Cayeley-Hamilton theorem 0103 	 The A matrix
is a root of its characteristic equation:

E
..x..':..	 -	 ..	 27
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(49)
P(e) "f` /gyp	 "^' ^ .. ^?r►

f	 I	 •

The coefficients pi are obtained with the help of recurrent

relationships:

PI = - Tx

P2- - I12 (PITI+T2)
	

(50)

n = -n (P,,-; T, + P, T2 + 0 0. + PI TI- > + To ) ,

where T  - tr(Ak).

in (48) we limit ourselves to m terms of the expansion. Let

us ,all the respective matrix E m (t). since, according to (49),

P(t) - 0, then

Em t) = Q(t)P(t)  + R(t) = R(t). 	 (51)

The polynomial R(t) is found as the residue of the division of the

polynomial Em(t) by the polynomial P(t) 	 The algorithm makes

it possible to find the exponential (48) to any degree of accuracy

using exponents of the A matrix not higher than n

Conclusion. The routine described in this work has been

used to process experiments since 1972. Since that time various

improvements have been made resulting in virtually flawless opera-

tion. Counting time under the routine is proportional to the cube of

the number of varied parameters; it also strongly depends on the

accuracy of the initial approximation of the parameters. The time

of search for the statistical sum minimum for an essentially non-

linear function f(X) comprising 5 parameters and 50 experimental,

points _(of the sum of exponents type) with an EC 1040 machine is some

15 to 20 minutes if the initial approximation was poorly given.

(the statistical sum has to be reduced by a factor of more than 10,000)

and two or three minute s if the statistical sum of the initial approx-

°mation differs from the minimum statistical sum by a factor of less

28



than 100. If the parameters of the model enter linearly, the minimur

is Found in two iterations of the Newton method, and the counting

time decreases considerably in comparison with nonlinear models.

In the near future it is planned to adjust a new version

of the program, the idea of which is set forth in the last paragraph,

The author expresses his great appreciation to V. M. Dmitriyev

for his support and.critical remarks when the program was being

elaboratred.
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APPENDIX. Text Of Routine in FORTRAN—IV. 133

SUBROU I	 MI r+NE^}

PROCESS EXPERIMENTS BY MODIFIED NEWTON METHOD 	 -
DIMENSIOh	 X(Eo) ► )f1 ( Z 0) rAVD ( 20) sNARK(2o) r'

• GR(2'}) rXM1 (20) t
^Ity^Q)rEXi1(1► trs) ► VEXPE(A^0)t

F •A^zA ► 2Q) r^1 t2O^t's))
COMMON/TM/ A#j#1XPE*y1XFE
COMMON/TN/ NoNARK;X
COMMON/TNI/ N1rXi;AVD
COMMON/NELF11 XN1
COMMON/A/ A
COMMON/OR/ on
COMMONf IGf ICON

9. 9 READ(1 r14i) 	N
IF(N.GT.O.ANE,N.LT.2o)	 •OTO	 1
WRITE(3#110)
STOP

C FIRST ACCESS PRINT FUNCTION HEADING
C DO NOT COUNT-FUNCTION VALUE""
1 CALL	 cUNto ► Z!rNrX,FT)

OEAD(1004)	 JPE
IF	 (IPE.E090)	 MRZTEC3001)
IF(1PF.E0	 1)	 MRITFO	 1C2)

E LOAD INPUT EX pp ER MEN	 ppATqq ARRAY
CALL	 ENEXP6Mo	 rl^PErYEX^!>

0 LOAD INITIAL PARAMETER APPROX -IMATION ARRAYS
CALL	 2 POlNT(N ► x,0AAK ► N1rX1,AVD,XN1)
RIAD(1 o 1 oO	 Bps

WRITE(3 ► 10T ) 	IF$
ICOUNso

E COUNT INITIAL SCALES AVD

,, CALL	 STAT(1 ► fQ)
PRrE'1r► 30/fQAT^flOAT(M-it+1)/2.)
CALL	 1AVD ( So#pR#N1#XlrAVD)
MM n C

f CALL	 2NFORM(MMs%o;1COUN ► N1 ► XM1 ► AVD)
COUNT GRADIENTS AND SECOND DERIVATIVES MATRIX 	

tGAIL	 RISHER( jpE ► PR ► s0)
DO 31	 I.1 ► N1

I D0 30 ini'N1
3^ A1(IiJ)uA(= ► J)
31 CONTINUE
G ACCESS SYMMETRIC MATRIX A	 DIMENSION	 N1rN1

CAli	 vNVERS ( 1PErAlrA)
C COUNT NEXT POINT BY NEWTON METHOD	 - E

DI f1 .0. r,

DO	 10	 I : 1 ►N`t`

Foo,
DO ! KR1 ► N1

r F:F+A(I ► K)•GRCK)
Dis1 • t^IS 1^ i^f1t<I),

k

p^3,=nt=1 /2. I^4

0 COUNT STATISTICAL SUM AT PREDICTED POINT
t1 CALL STAT(0rff)

YF(SS.IT.10.11 9 )	 C OT O 19
DO	 22	 Ks1,N 1

^	

22 X1(K)wX1901 100,
2si^1

31GOTO	 ? 1 __ .,



^!OQNIr y `
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FCZ.Ia. o) 	Caro	 ,z
:F(SS.0T.$0)	 G O TO	 15

Geio	 y 3 {
4 CHECK END OF MINIMUM SEARCH

^rRITEC^ ^^► ^) 	 plf1^'
tFt0IS1.QT ,A^S<It)) 	 R nplii
R1 vs(I
rF(ss,LT.aU)	 R1 •es
F($S.LT.2Q) K1 No. AD.s(R).LT.E P S*S QR T(R4))	 COTO 20

TF(s5 , GE.80 ) _ 0 O TA 	 15
Mats+

x	 k 3 S4 K ss
PR*EPS * S01SgRT (FL`OAT(M-Nf1)/2.)

B
DO	 14	 Ka1 ,N1i,

XNi (K)*XH1 ( 0 *X1 (K)*AVD4K)	 _
AVD(K) uAVO(K) * fgRT `CPR/AOS(A1(K#K))) I

X 1 (K) x u. 1
14 CONTINUE
C TRANSFER TO NEXT COUNT STEP BY NEWTON METHOD

GOTO A
C ONEDIMENSIONAL MINIMIZATION IN DIRECTION OF COVARIANCE-MATRIX

15 DO	 16	 K81,N1

16 GR( K) n X1 (0

g AL'ss,

S3*SS
C ONEDIMEN^-'IONALIINIMIZITIJN'SU R%^ T31N

CALL	 0014	 PEia+EP5,12 ► s	 ,AL	 A
MM 22
GOTO	 43

PR] NT OPTIMUM THE RETICAL FUNCTION TABLE
6ALt	 cTAT(1,CS^2

C PRINT OPTIMUM ppARTfTE
FbUN#N1tXNI	 AVD)CALL	 INFORM	 3,	 ,

C. PRINT :+ FISHER MATRICES,
COVARIANCE AND CORRELATION MATRICES,

C
AGCURACtES'NORMALIZED TO STATISTICAL SUM VALUE AT

C MINIMUM

CALL	 REZULT(l;GOUEl,t4,Nl s$$PA,A1,Ai o IVD,X`M1) F

1 r.1 FORMAT4IX/// x 	 IPIND ^	 NO CHECK PRINTOUT
%102 FORMAT(1X/ // '	 IPE n 1	 - Yf^S CHECK PRINTOUT
103 FORMAT(1X,10OXf1/ER	 R^,	 )"

r,$ FORMAT( 14X ► I4, I4)
..,•>b FORMAT(E16•71
17 FORMAT	 ACCURACY OF DETERMINATION OF MINIMUM',

*, TO SCALE OF ONE -CHI -SQUARE DISPERSION')
#:6 FORMAT	 ,EgA. .71 	 PREDICTED CHANGE OF STATSUM',

*916.7#	 *	 REAL CHANGE OF STATSUM' ) 
G^^ _ FORMATE16)

FORMAT tIX	 IMPERMISSIBLE NUMBER OF 'PARAMETERS')
GOTO o4
RETURN

d
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WAP I

SU6900t1 e E 
R

fXPrtm
l
z(g

x

pl#vl
7(

^i^0
' ^y l^

OtMENSION Z( 4n 0 ).,fXP6(40.) tVEXPf (400)
AEAa(1	 i 00)	 M
READ ( , 1 160	 t ttt) s1 u 1 f m)
READci,*.O1)	 ti<%Pl^tl,t	 l r

REAQC^rSbi}	 #YEXMECt3^ts';^M}

WRSTE(3 rj04 )	
n

DO 6 1	 l	 M
A n EX P ^

l
y
^
II
C I )

.. oNVEXPEtiy
IF(I.mE.4. ) 	^0 7`6	 S
„rRITE(31105)	 1
STOP

3 GrZcY

{	 100 FORMAT(It)
_,	 1!^1 FOR°h6AYt5E , 6,7^
104 fOAMATE/t1Xrf	 I't3X#f	 '	 t3AO i NT NUMBER	 EXPER IME^I^'AL VALUE

*'ERROR OF EXPERIMENT	 i6X# '60ORDINATE
105 f ORMAT c 7 W @ l r 1 6 ► ' ZSRO ERROR AS gg i NED I	 E^ P, t)MENT

F0RMATt1X#18#11f #l l%.7i10	 rl1s + 	t6X t	 1%X106
RETURN
!N@

„

^t

E

33
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/36

EAVQi
000"
0007

SIIRROUT11NE	 EAVD(Sp rPR,Ni,xlrAVOI
xl(?O) . AYO(20)DIMENSION

0. Ei S0005 CpStf1u!
0005 DOi7t	 N1

'0006 21 xi (r)=,
0007 CALL STAT ( OfsPIt
o0an OM
000 9 CA(l) STAT(OoSN)
001A" `s spi7sOI *( SWO)
00'1' IP(ABSS).§G T. PR)	 GOTO

iF(ABS(AVD`I)).LT,EP3Uf	 OOTO003 y

0014
STolpE ( 3,i0a)	 I

0015 5 AVpT(I)wA VD(Il *C

0017
0015

6 SUABS is)	 .s	 P	 B)AVD(I):AVD(I)	 QRT(	 R/
0049
0020

7
10a

X1(7)-
FORMAT	 STATISTICAL SUM FOUND TO -BE

+ r INDEPENDENT OF #151#PARAMETER')
UO21 RETURN
0027 END

SPdI,NT

0001 5USRaUl	 NE so0 NT ( N,xfMARRK , NtoX}oAAVpiXIi	 I
Xt	 ),MARKS207^XN1(20^rxi(t0>j	 000? 0 MENSION	 O	 rAV p (2

0003
000 4

READ(1r4)	 (X^I) rt81rN^
RE A ft, (i a 4)	 (AVQ(I) #

0005 WRITE(3+6)
000 00 R	 in

0008 SMAYDNI)	 I	 iO T O 7PCs
00 1 W R ITEt3rap)	 Z

001ry 7 WRITE(3	 9 )	 I,A,d
CONTINUA00' s	 _

001 4,
a

READ(i	 iO3)	 IMARk ( l),Ia1k)
0 015 WRITE6 ,104)
004
0013

Nq'a, 77
IF(M1lRKtI^" ES.1) 	 O NT O 	 17

001 0
002 r

Nq;N1*i
WR2TE(3,iAS)	 N101

OOl,
002 %

Xi ( Ni)^A.
xNiWiNiti)

002 AVb(N0•AVD(:5
002 1- 7 CONTINUE
007-1
002 1

4
6

FORMAT(SE16)
FORMAT(ix//j ^ARAMETEW 15"X ►INIT4AL	 VALUE OF

*PARAMETER

'•sx+'APPROXIMATE	 ERROR	 OF P^ Rq^METER')
G02r
U0x^3

9 F	 R̂tMA77(11I(,;S, E1S..^ri6XE1.7)
10 MATr^Y//	 APPROXIMATE	 ERROR',`f

002'9 1 n3 18A p f ( f iffoETER STATED EQUAL TO ZERO x )
0030 1o4 FoDmAT(+x //'`ALL 	 FOLLOWING	 DATA	 PRINTOUT

f	 ^^

iJ

*'ACCORDING TG INTERNAL NUMERATION'/

*'CORRES.POND'ENCE OF^PARAMETERS'//

003 y 	105 +FORMATt14xPTAx^iIS 
^ 4X1 

IEXTERNAL PARAMETERS)
t	 0032	 RETURN

0033	 ENO.,

34
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000"
OOG;
000$
0004
0005
0006
0007
0008
00 09
0011%
0011
001 7
001 4
001 5
0016
0017
001 a
0019
002M
0021

t 00.22
0023
0024
0025
0024
0027
01)26
0029
003x►
003'
003?
0031

0001
002

0003
0004
0005
OOOA

1000?
0009
0009
00 1
0011

10012 _>
0013
001 4
0015
0016
0017
001+
0010
0020
0021
0027

80027
223

W4
0026
v027
0026

8
9

I.
1
3

113
116

2

3

4-

1

126

FISHER

SUBROUT NE FI!) NEgCIPErP ' trSO)
DIMENISI N X1 ( +,20) r AVD ( 2u}+ G R(20^t$PE(?0) rAt2(f)20)
COMMON/TN1/N1rX1,AVD
COMMON/A/ A
COMMON/tile/ ER
DO ^ I^1 +N1
` 

••

XO 1 tlflsI^1`4t1rN?

	Al10	 S g ag)*tStt*S 3
IF(ABS(A( ► I))-GT,PR 4.) GOTO 6
AV pp CV B AVD 1)' *2•
60T0
GRe'02(SP-SNI/2,
SPS(1')sSP
IF(I.E0,1) GOTO 1

DOt4? 
Kai 

rtl
C
j
LI S;ATtOr 3)

ACIrK)x(SS-oSA6(K))•(SPB(I)-=0)
A(Kv1)+A(IrK)

	

1tE	 D,

IF(?PE,E0,0) GOTO 116
WRITE-(3#112) (AVD(I)rlslrNl)
WR!TE(3 r 1 3) tGRCt3 r"I 3 lrini)
FORMAT(/ ^ AVpr/1Xr(BE14.e))
FORMAT(_/ ► GRr/1X.(8E^4.6))
RETURN
END,

INVER5

SUBROUTINE INVENSCIPErNrA)
DIMENSION A(20r20)rV(20)
N1 •N--a
IF(%PE,EQ. p) SOTO 3
WPITE(;.y1S) l(A(IrJ)rI^1 ► Nf^J^1iNI
DO 9 K=1 ON
P^1./At1a1)
DO 4 l^2 ^rN
V2.01)` 

`1111
DO y A* I21 N1 	

9s
YU-V(I)*P
A(?rN)8Y,

s
A(?+J)sAt111ij*1)*VQ)*Y

'CONTINUE
A(N,N):•p

DO 1 0 J I Ns
AtIrJ)s•A(I+)
AW II)BAA(IrJ

IF1I4 U E0 0) OOTO 12
WRITE(33^+1 g l) t(A( rJ) r'I=1 Wow),
FORMAT 1X* A -BEFO'RE ACCE4 BE^A.6))
FORMAT(I W A AFTER ACCESS ^//(BE14.63
RETURN
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# w

I

0

S
,
TAT

i le D 9 F R S 10 N x a0 r Xi t20	 AY0
v xHl (2p)

COMMON/TM/	 ,2r6xpE#vExpE
C00 COMMON/TN;NsNARK#X

COMMON / IC/ICOUN
gist,
DO	 5	 ll^i so(

r. f 4 01 t	 f U A a Of 
I 
v a )•0%
	 G0T0

ool i
8 8 1 p,

'
1
3

r
§11I:14,

4
K	

tKjI0+Xj(K1)*AVD(Kj)

0014
5 CONTINUE

r r, 
(L_TU	 f Q
	 1)
	 o ptl y f (3	 19)

00 4 5 1 COU 'rij CdUN+I
coi A
0017

S as h ,0t)o: ^
	wi

'I I001 6

JI8 1"
zf 

I

rl

C JLT Uldc	 10

"t to a!LT.l;%8"l# G.I IF	 F
002 1 ssolo.fis .
002 2 GOTO is
002 3 6 FE&EXPE(l)
00 2 4 j is(IT"MOEXPE(l)
Doti *ci*eas
0026 IFtTU.Eo.jj	 antTec3*120)	 ttFTtFfi#Cl
0027 IF CONTINUE
002•.

FOKMATCI Kf /Sx,	 I	 • DEMONSTRATION Of	 r- HEORETICAL CURVt'l/
5X# 0 2	 s-	 EXPERIMENTAL	 VALUE'/

:gxt	 COMPARISON WITH	 EXPERIMENT'/
(THEORY MINUS	 EXPERIMENT DIVIDED	 BY	 ERROR OF

EXPERIMENT)'//
:Jxo

5

I	 POINT

12 0 F011MAT(1X*oIl,l8,F	 1	 '0611-W	 1	 f lEll.4, 1 	I	 P#*ji*4.t
1 2 1 FORMAT(1X,53411 t-)^

0033 1 5 RFTURN
0034 ENV



a x

/39

tool SUIROUTINI Opl tiff ► EPErs2^3	 r	 ^ECA 3 ► i	 FS3
00 07 IE(A x6T.AL	 )	 SOTO 2

$,.I.$,.I.
.

f s•30 )RIT	 %2#$3rAL2rAL3
WOTOLO0004

0005
2+

GOT03 6T % $z)
	 0016 3 €

•007 3 AssL1s--AL3
0005 c 5H ODTINE	 STATAL C ALt$S) BY AL	 FINDS	 s
0409 5 CALI	 STATAL( CLi rsi)
00 in IF ( Ti+E.E0 .1) 	 SCR	 TE(3 ► 31)	 AL1iS1
001 4 7 if(Sl,G ' . IS3 	 00	 0	 9
0012 AL3•AL2
00il AL2sA L1

(AL3•AL2)+Z+
AL P *AL2 -0015

0016 Ss=S2 I
0019 9 AOsS1 +(AL2wA + 3 ;
002 4 AtsS2*(AL1	 A s i
002

(ALa+AL3)f 2,)6j
40 ^0 0., ers(AL1+AL3)/2•
002L
0025

B1w (ALi#AL	 )/1-
A n (Ai*l !A *92+At*63)/tA1-A2*A3)
c t STA^AL A	 S )

E .E0.1)RIE	 ( 3.32)	 A1,rA
s)
LALA • AL •to (	 '4l$	 +'A3

*SQRit6	 i`,LE.SSP^0028 IE(A6S('SS;SSSP? • LL T+EDS ► 	 N0+	 60	 C?	 2
0029 IF(SS.LEIt2)	 GOTe	 15
0030 IF(AL.LC AL21	 SOTO 16

s003 p ;: AL3sAL

1a
AO^

40
sAI

#
0o]a

6
80
n
176
6

15
9

IF ( AL,L'E , AL21 	 SOTO	 2Q
0036 SIR

AL1s	 L2
F#,

003Y

S3iS221004. 20

0045 21
s

AL2sAL2

SSPASS0045

004/ 3A +X ► 'INCORRECT	 INPUT	 INTO	 SUBROUTINE FOR*FORMAT(
t1 PNEDIMENSIONAL	 MINIMIZATION'/-

Ns; n t,E13+51

*psi P	 n lo E13•5/

*J 40	 n ^,E13^
004a 31 FORMA;(;Xe'SEA

5)
RCH	 FOR CANONICAL CONFIGURATION'/

*1x
*fAL i 	x # ,E13. K »'	 %1	 r'.E1`4.i)

0049 32 ARRAY OF POINTS'%*1ORMATCIX

AL	 n ' ► EIS•Sr' ALI	 8 ' ► E13.5r'AL2	 " r ► E'13.5r , ,AL3	 *t tEfS.5j,

0050 2E *'SS r-'
• E11•5r r	S1	 2' ► E13 . 5rf	 6 2

, n 't
E 1'3.Sr r	S3a	 i flils,	 )

005
00A2

29 RETURN
END,
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0(40
000'
cc01,
000s
0006
0007
floo9

i

1
LL

I	 :r

AD

INFORM

zC" SUBROUTINI<)IFORM^tHF^rSSr I C Otirt . Xltl eRVi)
0002
000$

DIMFNSVON XK	 t2	 )rAVD(20)
I F (M'M.90, O)	 GR I	 F l3 r100)

0004 IF(,
M

M.Ea
,
l)	 c	 ^	 o

{{
c
^^ff

t
oot
0000 1 ,00: 1 8:1 1 	T30103{+R

'W02TE(3r104 ) 	SSrICOUN
coo* WRITE(3#105)
GO DO	 44	 : xi rN1
G01 II)*

t ;AVDD(I)Ŝ̂ •1Y4	 f WRITE(3 I^o5!.f 	t.!	 f
Oct t
C o*
co' ^'

14
1 1 0
I C1

CONTINUE.
FORMATl1	 1FIRST	 INPUT'),
FORMAT Q	 ,INPUT AFTER STEP BY NEWTON METHOD')

^

CC It If` FORMHTCIXrI'NPUT AFTER ONEDIMENSION L MINIMIZATION')
00tx
0014

10 ORPAT CIW ND.	 EARCH FOR MINIMUM')
^ORMAT(lXrE^6 r	-- ^6	 STATISTICAL SUM''104

CMG i IOS
• T	 2	 r	 1 NVMQ R OF ACCESS)	 Tp, STATSUM 6L^OCK' )
FR^AT (3 	 r	 ARAMETER	 ►	 "VALUE OF PARAMETER	 r LXr
f -LAST	 BASE' 1

002 f' 106 FORMAT(1X rI5r9X#Fj5.Tr6X#Ej5#?)

0022 RETURNEND x.

oIZULT

;001! SUB;OUT=NE	 REZULT(I;OUNfN#NrSSrA,A1rx 	 rAVD^XKy 1)
i l) fN 2p)fAi( 2 o• Tp)oAYC( ? 0)r^1(2Q	 A

C o o p
4GO C

4D1R^rN S
I	 A)20r2r)

-

004:
D O	 6	 I	 g r

AR:W11I)/(AVD(I)+AVD(J))
/(SS`2')A$	 A9*FL8AT(N•N*1 )000 17

f^COA 3 WRITE(30126)	 I #JfAB
too q
0,oi r

4 CONTINUE
WAITE ( 3027)

00" D O	 6	 I e'1 i N
001?
0 , C'q X

Do	 s	 J•I,
8sA(I f J )+(AY	 (	 )+AVD( 4I ) )

001t.
5

+19^e+	 iRg/FAfMrN
285C0`}

0CI ok 6
WRIT	 (w	 I+J fd
CONTINUE

001 7
1

DQI OEIs1!9)x
0C" 9 DO	 R	 J^f`
G02
002" a

RsAIY,J	 /Spit(ASR(A(I+#)+ACJ.,J)))
WRITE (3.13p	 I #J # R

125
+uu

FORMATtIX // SX	 + FISHER MATRRI^X	 ^I13C)
+'sfrE155. 7)0024

O	 ^
126

7'lie
FORMAT(1XrrAr	 j3fT3
f01MAT 1, X/lSX + 	C.OV 

3R 
I A 0 C
	 1 MAj	

I X	 `1131)
90	 f*

7 ppqq

` 8`,^3 r 1 	+	 s	 r	 '^+fORMAT(iXf
'GR ►lATl1X/ /SYr 	CORREhA'(I^1 5 PRIX	` / >C )

I3 fI3,	 r 
,

30 ORMAT0XrfR+
0929 R FT`URN
003 P END

sTATA L

SUBROUT'IME sTATAL CAL,SS)
DIMENSION xi(2G)rGR(2p)fAVD(2p7
COMMON/ l GR
COMMOA^I^NI / 91 r X 1 r Ai`b~

^t = N
A(X)= cRtK$iAL

CALL STAT C O , S$	 XN^)
RETURN	 fJl f

,t,^.; .r°;.^ ir ,Lx	 I
END S x;TI
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An example of organizing a counting program with MODNEU subroutine 41

call from the object module librar y . The .T'NPOL 'ifZi,N,X,FT)

subroutine is used, which approximates the experiment with a

polynomial of the N-1 degree (N i-2). The degree of the polynomial
is N-1, the number of selected parameters is N.

408 072N E UTE	 USIKOV TEL. 73-23'
PAUSE ASSGN SYSRLS O V190 1 DISK 102
OPTION LINK
= X 1C FFORTRAN

MAINPIN

CALL MOONEy
ST01►
t^ND

FUN

SUOROUTIpt FUN(T,it,N,X#FT)
DI M iNSION f(20)
CALL FUNPOL ( 1,Z1,01•X,FT)
RETURN
ENA

{

r`UNf+OL

sU6KOUTINE FUNPOL(I'lleNrXiFT)
OI MtN819N xt20t
IF t ^.E o •1t OOTp t	

;

N1=M•1
WR1 1 1(3000) N1
WRIt113#'101
GOTU 2D

2	 FT^it(! 3
CaL

DO	 j1•2,N
FT5tT+C*X(11)

3	 CaC!ZI
1 00	 FORMAT ( / /'EXPER.IMENT APPROXIMATED BY 'POLYNOMiAL OF' 	 1#14 o

 
IDEGREE')

i	 101	 VO HM AT 6 X / 1' X0)+XC2?"2 +X0;", + ^`2*Xt4) Z+'^3*....P3
20	 RET6RN

-EN'.`

1

t

S^
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