4,997 research outputs found

    Hillslope and groundwater contributions to streamflow in a Rocky Mountain watershed underlain by glacial till and fractured sedimentary bedrock

    Get PDF
    Permeable sedimentary bedrock overlain by glacial till leads to large storage capacities and complex subsurface flow pathways in the Canadian Rocky Mountain region. While some inferences on the storage and release of water can be drawn from conceptualizations of runoff generation (e.g., runoff thresholds and hydrologic connectivity) in physically similar watersheds, relatively little research has been conducted in snow-dominated watersheds with multilayered permeable substrates that are characteristic of the Canadian Rocky Mountains. Stream water and source water (rain, snowmelt, soil water, hillslope groundwater, till groundwater, and bedrock groundwater) were sampled in four sub-watersheds (Star West Lower, Star West Upper, Star East Lower, and Star East Upper) in Star Creek, SW Alberta, to characterize the spatial and temporal variation in source water contributions to streamflow in upper and lower reaches of this watershed. Principal component analysis was used to determine the relative dominance and timing of source water contributions to streamflow over the 2014 and 2015 hydrologic seasons. An initial displacement of water stored in the hillslope over winter (reacted water rather than unreacted snowmelt and rainfall) occurred at the onset of snowmelt before stream discharge responded significantly. This was followed by a dilution effect as snowmelt saturated the landscape, recharged groundwater, and connected the hillslopes to the stream. Fall baseflows were dominated by either riparian water or hillslope groundwater in Star West. Conversely, in Star East, the composition of stream water was similar to hillslope water in August but plotted outside the boundary of the measured sources in September and October. The chemical composition of groundwater seeps followed the same temporal trend as stream water, but the consistently cold temperatures of the seeps suggested deep groundwater was likely the source of this late fall streamflow. Temperature and chemical signatures of groundwater seeps also suggest highly complex subsurface flow pathways. The insights gained from this research help improve our understanding of the processes by which water is stored and released from watersheds with multilayered subsurface structures

    High-order Dy multipole motifs observed in DyB2C2 with resonant soft x-ray Bragg diffraction

    Full text link
    Resonant soft x-ray Bragg diffraction at the Dy M4,5 edges has been exploited to study Dy multipole motifs in DyB2C2. Our results are explained introducing the intra-atomic quadrupolar interaction between the core 3d and valence 4f shell. This allows us to determine for the first time higher order multipole moments of dysprosium 4f4f electrons and to draw their precise charge density. The Dy hexadecapole and hexacontatetrapole moment have been estimated at -20% and +30% of the quadrupolar moment, respectively. No evidence for the lock-in of the orbitals at T_N has been observed, in contrast to earlier suggestions. The multipolar interaction and the structural transition cooperate along c but they compete in the basal plane explaining the canted structure along [110].Comment: 4 pages, 3 figure

    Conservation implications of turtle declines in Australia's Murray River system

    Get PDF
    Abstract Conservation requires rapid action to be effective, which is often difficult because of funding limitations, political constraints, and limited data. Turtles are among the world’s most endangered vertebrate taxa, with almost half of 356 species threatened with extinction. In Australia’s Murray River, nest predation by invasive foxes (Vulpes vulpes) was predicted to drive turtle declines in the 1980s. We assessed populations of the broad-shelled turtle (Chelodina expansa), eastern long-necked turtle (C. longicollis), and Murray River turtle (Emydura macquarii) in the Murray River and some of its associated waterways. Our results suggest that the predicted decline is occurring. All three species are rare in the lower Murray River region, and were undetected in many locations in South Australia. Moreover, E. macquarii had considerable population aging almost everywhere, possibly due to comprehensive nest destruction by foxes. Chelodina longicollis also had population aging at some sites. Sustained low recruitment has potential to lead to collapses as turtles age, which is particularly worrying because it was predicted over 30 years ago and may have already occurred in South Australia. Our results show that turtle declines were not mitigated since that prediction. If the crash continues, a vertebrate guild responsible for considerable nutrient cycling in the aquatic ecosystem will disappear. Our results highlight a worst-case outcome when species declines are predicted, but insufficiently mitigated

    A stochastic flow rule for granular materials

    Full text link
    There have been many attempts to derive continuum models for dense granular flow, but a general theory is still lacking. Here, we start with Mohr-Coulomb plasticity for quasi-2D granular materials to calculate (average) stresses and slip planes, but we propose a "stochastic flow rule" (SFR) to replace the principle of coaxiality in classical plasticity. The SFR takes into account two crucial features of granular materials - discreteness and randomness - via diffusing "spots" of local fluidization, which act as carriers of plasticity. We postulate that spots perform random walks biased along slip-lines with a drift direction determined by the stress imbalance upon a local switch from static to dynamic friction. In the continuum limit (based on a Fokker-Planck equation for the spot concentration), this simple model is able to predict a variety of granular flow profiles in flat-bottom silos, annular Couette cells, flowing heaps, and plate-dragging experiments -- with essentially no fitting parameters -- although it is only expected to function where material is at incipient failure and slip-lines are inadmissible. For special cases of admissible slip-lines, such as plate dragging under a heavy load or flow down an inclined plane, we postulate a transition to rate-dependent Bagnold rheology, where flow occurs by sliding shear planes. With different yield criteria, the SFR provides a general framework for multiscale modeling of plasticity in amorphous materials, cycling between continuum limit-state stress calculations, meso-scale spot random walks, and microscopic particle relaxation

    A New Framework for Modelling Fine Sediment Transport in Rivers Includes Flocculation to Inform Reservoir Management in Wildfire Impacted Watersheds

    Get PDF
    Fine-grained cohesive sediment is the primary vector for nutrient and contaminant redistribution through aquatic systems and is a critical indicator of land disturbance. A critical limitation of most existing sediment transport models is that they assume that the transport characteristics of fine sediment can be described using the same approaches that are used for coarse-grained non-cohesive sediment, thereby ignoring the tendency of fine sediment to flocculate. Here, a modelling framework to simulate flow and fine sediment transport in the Crowsnest River, the Castle River, the Oldman River and the Oldman Reservoir after the 2003 Lost Creek wildfire in Alberta, Canada was developed and validated. It is the first to include explicit description of fine sediment deposition/erosion processes as a function of bed shear stress and the flocculation process. This framework integrates four existing numerical models: MOBED, RIVFLOC, RMA2 and RMA4 using river geometry, flow, fine suspended sediment characteristics and bathymetry data. Sediment concentration and particle size distributions computed by RIVFLOC were used as the upstream boundary condition for the reservoir dispersion model RMA4. The predicted particle size distributions and mass of fine river sediment deposited within various sections of the reservoir indicate that most of the fine sediment generated by the upstream disturbance deposits in the reservoir. Deposition patterns of sediment from wildfire-impacted landscapes were different than those from unburned landscapes because of differences in settling behaviour. These differences may lead to zones of relatively increased internal loading of phosphorus to reservoir water columns, thereby increasing the potential for algae proliferation. In light of the growing threats to water resources globally from wildfire, the generic framework described herein can be used to model propagation of fine river sediment and associated nutrients or contaminants to reservoirs under different flow conditions and land use scenarios. The framework is thereby a valuable tool to support decision making for water resources management and catchment planning

    Investigations On The Carrier Rate Of Pasteurella Multocida In Black Rats (Rattus Rattus) In A Commercial Quail Farm

    Get PDF
    The aim was to investigate the level of Pasteurella Multocida infection from two anatomic sites of black rats (Rattus Rattus), popularly referred to as house or roof rats in a commercial quail farmhouse with recurrent fowl cholera outbreaks and also to evaluate the association between the Pasteurella Multocida found in rats co-habiting quail poultry houses and isolates from outbreaks of fowl cholera. Thus 100 pharyngeal and 100 rectum swabs samples taken from rats co-habiting farmhouse were obtained and evaluated bacteriologically for isolation of P. multocida; 54% of pharyngeal swabs and 62% of rectum swabs were positive for P. multocida. Extended phenotypic characterization of the isolates confirmed the presence of subspecies P. multocida multocida. Subspecies Pasteurella Multocida septica and gallicida were not encountered. Ramdom serotyping of 5 isolates each from the two sites confirmed serotypes A:4. Fowl cholera outbreaks were confirmed on the quail houses and carrier rats had the same Pasteurella Multocida subspecies and serotype as the infected quail. The public health significance of the finding is also discussed.African Journal of Clinical and Experimental Microbiology Vol. 10 (1) 2009: pp. 2-

    Naturalness and Higgs Decays in the MSSM with a Singlet

    Get PDF
    The simplest extension of the supersymmetric standard model - the addition of one singlet superfield - can have a profound impact on the Higgs and its decays. We perform a general operator analysis of this scenario, focusing on the phenomenologically distinct scenarios that can arise, and not restricting the scope to the narrow framework of the NMSSM. We reexamine decays to four b quarks and four tau's, finding that they are still generally viable, but at the edge of LEP limits. We find a broad set of Higgs decay modes, some new, including those with four gluon final states, as well as more general six and eight parton final states. We find the phenomenology of these scenarios is dramatically impacted by operators typically ignored, specifically those arising from D-terms in the hidden sector, and those arising from weak-scale colored fields. In addition to sensitivity of m_Z, there are potential tunings of other aspects of the spectrum. In spite of this, these models can be very natural, with light stops and a Higgs as light as 82 GeV. These scenarios motivate further analyses of LEP data as well as studies of the detection capabilities of future colliders to the new decay channels presented.Comment: 3 figures, 1 appendix; version to appear in JHEP; typos fixed and additional references and acknowledgements adde

    The Role of Parvalbumin-positive Interneurons in Auditory Steady-State Response Deficits in Schizophrenia

    Get PDF
    © The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Despite an increasing body of evidence demonstrating subcellular alterations in parvalbumin-positive (PV+) interneurons in schizophrenia, their functional consequences remain elusive. Since PV+ interneurons are involved in the generation of fast cortical rhythms, these changes have been hypothesized to contribute to well-established alterations of beta and gamma range oscillations in patients suffering from schizophrenia. However, the precise role of these alterations and the role of different subtypes of PV+ interneurons is still unclear. Here we used a computational model of auditory steady-state response (ASSR) deficits in schizophrenia. We investigated the differential effects of decelerated synaptic dynamics, caused by subcellular alterations at two subtypes of PV+ interneurons: basket cells and chandelier cells. Our simulations suggest that subcellular alterations at basket cell synapses rather than chandelier cell synapses are the main contributor to these deficits. Particularly, basket cells might serve as target for innovative therapeutic interventions aiming at reversing the oscillatory deficits.Peer reviewe

    Phase Locking, Devil's Staircases, Farey Trees, and Arnold Tongues in Driven Vortex Lattices with Periodic Pinning

    Full text link
    Using numerical simulations, we observe phase locking, Arnold tongues, and Devil's staircases for vortex lattices driven at varying angles with respect to an underlying superconducting periodic pinning array. This rich structure should be observalble in transport measurments. The transverse V(I)V(I) curves have a Devil's staircase structure, with plateaus occurring near the driving angles along symmetry directions of the pinning array. Each of the plateaus corresponds to a different dyanmical phase with a distinctive vortex structure and flow pattern.Comment: accepted to Physical Review Letter
    • …
    corecore