528 research outputs found
Self-consistent simulation of quantum shot noise in nanoscale electron devices
An approach for studying shot noise in mesoscopic systems that explicitly includes the Coulomb interaction among electrons, by self-consistently solving the Poisson equation, is presented. As a test, current fluctuations on a standard resonant tunneling diode are simulated in agreement with previous predictions and experimental results. The present approach opens a new path for the simulation of nanoscale electron devices, where pure quantum mechanical and Coulomb blockade phenomena coexist
On the Angular Resolution of the AGILE gamma-ray imaging detector
We present a study of the Angular Resolution of the AGILE gamma-ray imaging
detector (GRID) that is operational in space since April 2007. The AGILE
instrument is made of an array of 12 planes each equipped with a Tungsten
converter and Silicon micros trip detectors and is sensitive in the energy
range 50 MeV - 10 GeV. Among the space instruments devoted to gamma-ray
astrophysics, AGILE uniquely exploits an analog readout system with dedicated
electronics coupled with Silicon detectors. We show the results of Monte Carlo
simulations carried out to reproduce the gamma-ray detection by the GRID, and
we compare them to in-flight data. We use the Crab (pulsar + Nebula) system for
discussion of real data performance, since its E^{-2} energy spectrum is
representative of the majority of gamma-ray sources. For Crab-like spectrum
sources, the GRID angular resolution (FWHM of ~4deg at 100 MeV; ~0.8deg at 1
GeV; ~0.9deg integrating the full energy band from 100 MeV to tens of GeV) is
stable across a large field of view, being characterized by a flat response up
to 30deg off-axis. A comparison of the angular resolution obtained by the two
operational gamma-ray instruments, AGILE-GRID and Fermi-LAT, is interesting in
view of future gamma-ray missions, that are currently under study. The two
instruments exploit different detector configurations affecting the angular
resolution: the former being optimized in the readout and track reconstruction
especially in the low-energy band, the latter in terms of converter thickness
and power consumption. We show that, despite these differences, the angular
resolution of both instruments is very similar between 100 MeV and a few GeV.Comment: 19 pages, 8 figures, accepted for publication in Ap
The Agile Alert System For Gamma-Ray Transients
In recent years, a new generation of space missions offered great
opportunities of discovery in high-energy astrophysics. In this article we
focus on the scientific operations of the Gamma-Ray Imaging Detector (GRID)
onboard the AGILE space mission. The AGILE-GRID, sensitive in the energy range
of 30 MeV-30 GeV, has detected many gamma-ray transients of galactic and
extragalactic origins. This work presents the AGILE innovative approach to fast
gamma-ray transient detection, which is a challenging task and a crucial part
of the AGILE scientific program. The goals are to describe: (1) the AGILE
Gamma-Ray Alert System, (2) a new algorithm for blind search identification of
transients within a short processing time, (3) the AGILE procedure for
gamma-ray transient alert management, and (4) the likelihood of ratio tests
that are necessary to evaluate the post-trial statistical significance of the
results. Special algorithms and an optimized sequence of tasks are necessary to
reach our goal. Data are automatically analyzed at every orbital downlink by an
alert pipeline operating on different timescales. As proper flux thresholds are
exceeded, alerts are automatically generated and sent as SMS messages to
cellular telephones, e-mails, and push notifications of an application for
smartphones and tablets. These alerts are crosschecked with the results of two
pipelines, and a manual analysis is performed. Being a small scientific-class
mission, AGILE is characterized by optimization of both scientific analysis and
ground-segment resources. The system is capable of generating alerts within two
to three hours of a data downlink, an unprecedented reaction time in gamma-ray
astrophysics.Comment: 34 pages, 9 figures, 5 table
Sardinia Radio Telescope wide-band spectral-polarimetric observations of the galaxy cluster 3C 129
We present new observations of the galaxy cluster 3C 129 obtained with the
Sardinia Radio Telescope in the frequency range 6000-7200 MHz, with the aim to
image the large-angular-scale emission at high-frequency of the radio sources
located in this cluster of galaxies. The data were acquired using the
recently-commissioned ROACH2-based backend to produce full-Stokes image cubes
of an area of 1 deg x 1 deg centered on the radio source 3C 129. We modeled and
deconvolved the telescope beam pattern from the data. We also measured the
instrumental polarization beam patterns to correct the polarization images for
off-axis instrumental polarization. Total intensity images at an angular
resolution of 2.9 arcmin were obtained for the tailed radio galaxy 3C 129 and
for 13 more sources in the field, including 3C 129.1 at the galaxy cluster
center. These data were used, in combination with literature data at lower
frequencies, to derive the variation of the synchrotron spectrum of 3C 129
along the tail of the radio source. If the magnetic field is at the
equipartition value, we showed that the lifetimes of radiating electrons result
in a radiative age for 3C 129 of t_syn = 267 +/- 26 Myrs. Assuming a linear
projected length of 488 kpc for the tail, we deduced that 3C 129 is moving
supersonically with a Mach number of M=v_gal/c_s=1.47. Linearly polarized
emission was clearly detected for both 3C 129 and 3C 129.1. The linear
polarization measured for 3C 129 reaches levels as high as 70% in the faintest
region of the source where the magnetic field is aligned with the direction of
the tail.Comment: 19 pages, 17 figures, accepted for publication in MNRA
Sardinia Radio Telescope observations of Local Group dwarf galaxies -- I. The cases of NGC6822, IC1613, and WLM
Almost all dwarf galaxies in the Local Group that are not satellites of the
Milky Way or M31, belong to either one of two highly-symmetric planes. It is
still a matter of debate, whether these planar structures are dynamically
stable or whether they only represent a transient alignment. Proper motions, if
they could be measured, could help to discriminate between these scenarios.
Such motions could be determined with multi-epoch Very Long Baseline
Interferometry (VLBI) of sources that show emission from water and methanol at
frequencies of 22 and 6.7 GHz, respectively. We report searches for such
masers. We have mapped three Local Group galaxies, NGC6822, IC1613 and WLM in
the bands covering the water vapor and methanol lines. These systems are
members of the two above mentioned planes of galaxies. We have produced deep
radio continuum (RC) maps and spectral line cubes. The former have been used to
identify star forming regions and to derive global galactic star formation
rates (SFRs). These SFRs turn out to be lower than those determined at other
wavelengths in two of our sources. This indicates that dwarf galaxies may
follow predictions on the RC-SFR relation only in individual regions of
enhanced radio continuum emission, but not when considering the entire optical
body of the sources. No methanol or water maser emission has been confidently
detected, down to line luminosity limits of ~0.004 and 0.01 solar luminosities,
respectively. This finding is consistent with the small sizes, low SFRs and
metallicities of these galaxies.Comment: 15 pages, 7 figures, accepted for publication by MNRAS. A
high-resolution version of the paper can be found at the link
http://erg.oa-cagliari.inaf.it/preprints/SRT_LGdwarfs_I.pd
Imaging of SNR IC443 and W44 with the Sardinia Radio Telescope at 1.5 GHz and 7 GHz
Observations of supernova remnants (SNRs) are a powerful tool for
investigating the later stages of stellar evolution, the properties of the
ambient interstellar medium, and the physics of particle acceleration and
shocks. For a fraction of SNRs, multi-wavelength coverage from radio to ultra
high-energies has been provided, constraining their contributions to the
production of Galactic cosmic rays. Although radio emission is the most common
identifier of SNRs and a prime probe for refining models, high-resolution
images at frequencies above 5 GHz are surprisingly lacking, even for bright and
well-known SNRs such as IC443 and W44. In the frameworks of the Astronomical
Validation and Early Science Program with the 64-m single-dish Sardinia Radio
Telescope, we provided, for the first time, single-dish deep imaging at 7 GHz
of the IC443 and W44 complexes coupled with spatially-resolved spectra in the
1.5-7 GHz frequency range. Our images were obtained through on-the-fly mapping
techniques, providing antenna beam oversampling and resulting in accurate
continuum flux density measurements. The integrated flux densities associated
with IC443 are S_1.5GHz = 134 +/- 4 Jy and S_7GHz = 67 +/- 3 Jy. For W44, we
measured total flux densities of S_1.5GHz = 214 +/- 6 Jy and S_7GHz = 94 +/- 4
Jy. Spectral index maps provide evidence of a wide physical parameter scatter
among different SNR regions: a flat spectrum is observed from the brightest SNR
regions at the shock, while steeper spectral indices (up to 0.7) are observed
in fainter cooling regions, disentangling in this way different populations and
spectra of radio/gamma-ray-emitting electrons in these SNRs.Comment: 13 pages, 9 figures, accepted for publication to MNRAS on 18 May 201
- …