1,222 research outputs found

    A benchmark study on identification of inelastic parameters based on deep drawing processes using pso – nelder mead hybrid approach

    Get PDF
    Optimization techniques have been increasingly used to identification of inelastic material parameters owing to their generality. Development of robust techniques to solving this class of inverse problems has been a challenge to researchers mainly due to the nonlinear character of the problem and behaviour of the objective function. Within this framework, this work discusses application of Particle Swarm Optimization (PSO) and a PSO – Nelder Mead hybrid approach to identification of inelastic parameters based on a benchmark solution of the deep drawing process

    Quarry Waste: Chances of a Possible Economic and Environmental Valorisation of the Montorfano and Baveno Granite Disposal Sites

    Get PDF
    The Montorfano and Baveno granite ore bodies are located in the Lake District (VCO-NE Piedmont). They were and are still quarried as dimension stones, with a consequent production of a huge volume of “waste.” In 1995, an Italian company (GMM S.p.A) decided to invest in the valorisation of granite quarry waste as a secondary raw material. An in situ geological prospecting was carried out in order to evaluate the characteristics of the material and the thickness and volume of the useful disposal sites that could be used (by means of geophysical surveys). As a consequence of the field work, the amount of quarry waste was estimated as nearly 2 Mm3. Chemical analysis was carried out on 75 granite samples, in order to individuate the Fe2O3 grade: from 1.321–2.593% of the original waste to 0.160–0.228% after the “dry process” treatment. Three different detailed maps that show the typology, the locations, and the quality distribution of the material in the dumping areas have been drawn up

    Leaf apoplastic proteome composition in UV-B treated Arabidopsis thaliana mutants impaired in extracellular glutathione degradation

    Get PDF
    AbstractIn plants, environmental perturbations often result in oxidative reactions in the apoplastic space, which are counteracted for by enzymatic and non-enzymatic antioxidative systems, including ascorbate and glutathione. However, the occurrence of the latter and its exact role in the extracellular space are not well documented. In Arabidopsis thaliana, the gamma-glutamyl transferase isoform GGT1 bound to the cell wall takes part in the so-called gamma-glutamyl cycle for extracellular glutathione degradation and recovery, and may be implicated in redox sensing and balance.In this work, oxidative conditions were imposed with UV-B radiation and studied in redox altered ggt1 mutants. Elevated UV-B has detrimental effects on plant metabolism, plasma membranes representing a major target for ROS generated by this harmful radiation. The response of ggt1 knockout Arabidopsis leaves to UV-B radiation was assessed by investigating changes in apoplastic protein composition.We then compared the expression changes resulting from the mutation and from the UV-B treatment. Rearrangements occurring in apoplastic protein composition suggest the involvement of hydrogen peroxide, which may ultimately act as a signal. Other important changes related to hormonal effects, cell wall remodeling, and redox activities are also reported. We argue that oxidative stress conditions imposed by UV-B and by disruption of the gamma-glutamyl cycle result in similar stress-induced responses, to some degree at least. Data shown here are associated with the article from Trentin et al. (2015) [1]; protein data have been deposited to the PRIDE database (Vizcaíno et al., 2014) [2] with identifier http://www.ebi.ac.uk/pride/archive/projects/PXD001807
    • …
    corecore