
IS - Computational Strategies for Metal Cutting & Forming Operations					   
A benchmark study on identification of inelastic parameters based on deep drawing processes using PSO - 
Nelder Mead hybrid approach 	

XII International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XII 

E. Oñate, D.R.J. Owen, D. Peric and B. Suárez (Eds)

A BENCHMARK STUDY ON IDENTIFICATION OF INELASTIC 
PARAMETERS BASED ON DEEP DRAWING PROCESSES USING  

PSO – NELDER MEAD HYBRID APPROACH  

M. VAZ JR.*, M. A. LUERSEN
†
, P. A. MUÑOZ-ROJAS*, E. BERTOTI

†
,                   

R. G. TRENTIN
††

* Department of Mechanical Engineering 
State University of Santa Catarina (UDESC) 

Campus Universitário Prof. Avelino Marcante, 89219-710 Joinville, Brazil 

† Department of Mechanical Engineering 
Federal University of Technology – Paraná (UTFPR) 

Av. Sete de Setembro, 3165, 80230-901 Curitiba, Brazil 

†† Department of Mechanical Engineering 
Federal University of Technology – Paraná (UTFPR) 

Via do Conhecimento, km 1, 85503-390 Pato Branco, Brazil 

Key words: Parameter Identification, PSO, Nelder-Mead. 

Abstract. Optimization techniques have been increasingly used to identification of inelastic 
material parameters owing to their generality. Development of robust techniques to solving 
this class of inverse problems has been a challenge to researchers mainly due to the nonlinear 
character of the problem and behaviour of the objective function. Within this framework, this 
work discusses application of Particle Swarm Optimization (PSO) and a PSO – Nelder Mead 
hybrid approach to identification of inelastic parameters based on a benchmark solution of the 
deep drawing process.   

1 INTRODUCTION 
The development of commercial Finite Element packages aimed at simulation of metal 

forming operations has instigated further research on identification of material parameters. 
Gradient-based techniques have been largely used in conjunction with parameter 
identification of elastic-plastic materials. However, existence of multiple local minima and 
overly plane regions in the design variable hyperspace have hampered application of such 
methods to some metal forming problems. Heuristic approaches, mostly based on Genetic 
Algorithms, have also been proposed owing to their potential ability to obtaining the global 
minimum. Notwithstanding, slow convergence and high computational cost constitute their 
main drawbacks. In recent years, the literature shows that Particle Swarm Optimization (PSO) 
– a Swarm Intelligence based algorithm – has been successful to solve a wide range of 
optimization problems [1,2,3]. In spite of the advancements, computational cost is still high 
owing to the number of fitness evaluations required to achieve the optimal solution. 
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Following a parallel research direction, the gradient-free Nelder-Mead (NM) method [4] has 
also yielded success in many engineering problems [5].  

Apparently simple, the identification benchmark based on a deep drawing operation has 
shown to be a challenge to the existing optimization strategies. The present work addresses 
application of Particle Swarm Optimization (PSO) and a PSO – NM hybrid approach to 
identification of inelastic parameters based on a benchmark solution of the deep drawing 
process.   

2 PARAMETER IDENTIFICATION AND THE OPTIMIZATION PROBLEM 
Parameter identification is a class of inverse problems which determines material or system 

parameters from a known response. The present problem is formulated using optimization as 
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where g(p) is the objective function (or fitness), p = [ p1  p2 …  pi  … pn ]T is the design vector 
containing n material parameters, and pi
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represents an error measure between the experimental, RExp, and corresponding computed 
response, RFEM(p), where N is the number of experimental points and ξj is a weight function. 

2.2 Particle Swarm Optimization - PSO 
Concepts of social behaviour of populations were used by Eberhart and Kennedy [1,2] to 

develop a Swarm Intelligence optimization method known as Particle Swarm Optimization.
The method requires an initial population to which are applied velocity operators to simulate a 
combination of individual cognitive abilities and social interactions. The scheme attributes 
velocities to each particle with the following components: (i) inertia, (ii) personal history and 
(iii) neighbourhood effect, as explained in the following. 

(i) Inertia: represents the tendency of a particle to follow its previous direction;  
(ii) Personal history: corresponds to the location in the search space which results its 

best fitness – the cognitive effect; 
(iii) Neighbourhood effect: stands for the influence of the best neighbouring individuals – 

the social effect. 

Box 1 summarises the PSO algorithm [3]. In the present implementation, the global best, 
pgb, represents the best particle of the previous step (neighbourhood effect) and the individual 
best, pib, corresponds to the best location of the particle along its history (personal history). In 
Box 1, the subscript m indicates any given particle of the population, superscript (k) denotes 
time step, w is the inertia parameter, and U(0,ϕ1) and U(0,ϕ2) are random functions ranging 
from 0 to ϕ1 and ϕ2, respectively. 
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 (i) Set 0=k  and generate randomly the initial population )0(p  and corresponding 
velocities, )0(v   
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(v) Evaluate stopping criteria 

IF  )( pφ  <   TOLφ     THEN

  )1(min +← k
gbpp

  EXIT 

ELSE IF  k  =   maxk THEN 

  EXIT 

ELSE 

  1+← kk

  GOTO (ii) 
ENDIF 

Box 1 : Particle Swarm Optimization algorithm [3] 
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Convergence and success are evaluated by the parametric dispersion index and normalised 
fitness index, respectively, as 
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where ns is a predefined fraction of the population (50 % of the best particles, in the present 
study), | ⋅ | is the Euclidean norm, and sbp  is the best particle of the (kth) step. The dispersion 
index uses the parametric form of sbp  and mp , in which 

)/()( infsup
,, iiiisbiisb pppppp −−=− , ni K1= . Noteworthy, the normalised fitness index is 

zero for the benchmark parameters.  

2.1 The Nelder-Mead optimization technique 
The Nelder–Mead method [4] – also known as downhill simplex method– is one of the 

most popular direct search techniques for unconstrained real optimization. It is a gradient-free 
method which is based on the comparison of function values at the n+1 vertices of a simplex. 
A simplex is a geometric figure composed by a set of n+1 points (vertices) in an n-
dimensional space. During the iterative minimization process, the simplex vertices positions 
are changed through reflection, expansion and contraction operations in order to find a better 
point (a point with a smaller objective function value), moving gradually toward the optimum. 
The algorithm terminates when the values of the objective function in all vertices become 
equal within a given tolerance. The cumulative effect of the operations on the simplex is, 
roughly speaking, to stretch the simplex shape along the descent directions, and to zoom it 
around the optimum. The original Nelder-Mead algorithm was conceived for unbounded 
domains, however, in this work, an improved version of the method was used, where the 
design variables bounds are taken into account by projection [5]. 

3 NUMERICAL EXAMPLES AND DISCUSSIONS 
The benchmark solution is based on the deep drawing process depicted in Figure 1. The 

problem is assumed axisymetrical and the Finite Element mesh used in the simulations 
contains 4 x 60 linear elements.  A total displacement of 50 mm is imposed by a rigid punch. 
The yield stress curve is given by the Ramberg-Osgood model, σy = σo (1+kεp)n, in which         
p = [σo  k  n ]T are the parameters to be determined. A frictionless process is assumed in order 
to eliminate other loading effects. The original geometry of the problem was proposed by de 
la Cour [6] to study identification of material and friction parameters from actual deep 
drawing operations. In the present work, the identification problem constitutes to recovering 
hardening parameters from a load – displacement curve obtained by the predefined set of 
parameters presented in Table 1.  
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3.1 The deep drawing operation – how difficult is to recover the benchmark parameters 
The deep drawing process basically comprises two stages: (i) the forming stage and (ii) 

extraction. The forming stage takes place for a punch displacement up to 30 mm, followed by 
extraction in the remaining 20 mm displacement. Identification uses only the first stage since 
no forming load associated with plastic deformation is generally observed during extraction 
(the weight function assigned to eq. (2) for this stage is ξj = 10-6). 

Table 1 : Reference material properties

σo [MPa] k n E [GPa] ν
150.0 200.0 0.25 70.0 0.3 
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Figure 1: Initial geometry (axisymmetrical model)

Table 2 : Lower and upper limits for hardening 
parameters 

Parameter Lower limit Upper limit 
σo [MPa] 100.0 200.0 

k 100.0 300.0 
n 0.1 0.4 
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Figure 2: Loading process: (a) initial population and (b) at convergence
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The degree of difficulty of the present identification procedure can be perceived when 
accessing the reference PSO solution: lower and upper limits presented in Table 2 and  
population size np = 120 and PSO control weights w = 0.5 and ϕ1 = ϕ1 = 1.0. Figure 2(a) 
shows the benchmark process against the loading curves for the best and worst particles of the 
initial population. It can be readily observed that the best particle of the initial population 
yields almost a visually indiscernible loading curve when compared to the benchmark 
solution. Despite such proximity, the hardening parameters are substantially different, leading 
to a quite large value of g(p). Such behaviour is highlighted in Figure 2(b), which presents the 
loading curve for the best particle of the initial population and at convergence                     
(φp

(k) = g[p(k)]/g[p(0)] = 2 x 10-6). Table 3 presents the corresponding hardening parameters.                

Table 3: Hardening parameters of the best particles for np = 120, ϕ1 =ϕ2 =1.0 and w = 0.5 

Case σo [MPa] k n g[p(k)]

Benchmark 150.0 200.0 0.25 0.0 
Initial population 161.200842 151.668638 0.245236695 1.30932 x 10−2

Convergence 150.000007 200.000022 0.249999987 1.06554 x 10−6

Table 4: Final parameters for the sole Nelder–Mead runs 

Run σo [MPa] k n  

1 115.263575 152.422207 0.345614  
2 160.568554 155.108585 0.248153  
3 167.861985 104.491676 0.263570  
4 150.000010 199.999916 0.250000 ←←←← success 
5 142.134206 256.993355 0.248251  
6 144.644356 237.750036 0.248608  
7 142.555435 254.611949 0.248102  
8 182.331590 243.258869 0.183204  
9 162.608795 233.540655 0.218168  

10 144.330283 262.343120 0.242789  
11 150.000001 199.999996 0.250000 ←←←← success 
12 157.449254 161.712293 0.250595  
13 155.529331 167.587594 0.251871  
14 119.382355 163.240097 0.328112  
15 123.602295 126.123278 0.341889  
16 168.367034 205.057582 0.216506  
17 157.343173 158.585516 0.252348  
18 166.365414 102.743295 0.356347  
19 170.129193 274.616758 0.198950  
20 190.485892 296.334696 0.164975  
21 145.455946 227.871556 0.249814  
22 146.789676 232.030391 0.246036  
23 155.529834 167.595469 0.251869  
24 169.284216 271.302117 0.198398  

It is relevant to mention that the present benchmark problem was also approached by the 
Schittkowski’s NLPQLP quadratic programming algorithm [7] and sole application of the 
gradient-free Nelder-Mead method. In order to assess the ability of the aforementioned 
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methods to recovering the benchmark parameters, 20 random initial estimates were tested. 
The gradients provided to the NLPQLP algorithm were calculated using a modified finite 
difference technique [8] but the method failed to recover the benchmark results for all initial 
estimates. Such poor outcome in the present problem is mainly due to a combination of very 
small gradients in some search directions. With such small gradients, any inaccuracy 
introduced by the finite difference procedure suffices to break down the optimization process.  

The sole application of the NM scheme yielded a low rate of success, i.e., only two out of 
24 runs reached the reference parameters, as illustrates Table 4. It is relevant to note that each 
NM run requires between 420 and 500 computations of the objective function, statistically 
making an average of about 5,500 fitness evaluations for a successful run. 

3.2 The sole application of PSO – some convergence issues 

This section presents a brief assessment of the sole application of PSO to the proposed 
deep drawing operation. The classical PSO implementation depends on the population size, 
inertia, cognitive and social parameters. Based upon previous studies on identification of 
hardening parameters [3,9], the following ranges are studied: np ≥ 60, 0.1 ≤w ≤ 0.9 and 

]0.2,5.0[21 ∈= ϕϕ . Convergence is attained when the dispersion index reaches 6101 −×=dφ . 
The identification process is assumed successful for normalised fitness 6102 −×≤pφ .  

Population size: Figures 3(a) and 3(b) show evolution of the identification process for the 
dispersion index and normalised fitness, respectively, for PSO control weights w = 0.5 and    
ϕ1 = ϕ2 = 1.0. As expected, smaller populations provide insufficient search capacity, leading 
to sub-optimal solutions. Larger populations yield more robust evolutions without, however, 
any improvement of the convergence rate. It is important to mention that convergence does 
not imply success, as the curves for np  = 60 show.   
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Cognitive and social weights: The cognitive and social weights define the learning capacity of 
the algorithm to finding the minimum within a restricted region [3]. Table 5 summarises 
typical runs for ]0.2,5.0[21 ∈= ϕϕ . Smaller cognitive and social weights compromise the 
exploitation capacity of the algorithm leading to sub-optimal solutions. On the other hand, 
larger values promote an erratic movement of the particles near the minimum region 
decreasing substantially the convergence rate.  

Table 5: Influence of the cognitive and social weights, ϕ1 =ϕ2, for w = 0.5 and np = 120 

PSO Weight Parameter Normalised

21 ϕϕ = 0σ  [MPa] k n Fitness φp 

Fitness 
evaluations

Convergence 
[ 610−=conv

dφ ] 

0.5 157.238397 144.154466 0.258825008 4.00925E-1 23160 Sub-optimal 
0.7 150.000041 199.999673 0.250000050 1.73882E-6 8400 
0.9 150.000008 199.999989 0.249999996 9.09007E-7 8760 
1.0 150.000007 200.000022 0.249999987 1.06554E-6 9360 
1.1 150.000014 199.999985 0.250000004 9.34123E-7 8280 Global 
1.3 150.000008 199.999995 0.250000002 9.34123E-7 11400 minimum 
1.5 150.000007 199.999985 0.249999997 9.34123E-7 14280 
1.7 150.000021 199.999903 0.250000013 9.52680E-7 19800 
1.9 150.000012 199.999995 0.250000004 9.34123E-7 35640 
2.0 − − − − − Unstable 

Inertia weight: The inertia weight aims at increasing exploitation, helping the algorithm to 
avoid local or sub-optimal solutions. Table 6 shows that smaller inertia values lead to sub-
optimal solutions. For the inertia parameter w = 0.9, no convergence was attained up to 40000 
fitness evaluations.  

Table 6: Influence of the inertia weight, w, for ϕ1 =ϕ2 = 1.0 and np = 120. 

PSO Weight Parameter Normalised
w 0σ  [MPa] k n Fitness φp 

Fitness 
evaluations

Convergence 
[ 610−=conv

dφ ] 
0.1 149.993176 200.065446 0.249991092 3.31397E-4 5880 Sub-optimal 
0.3 150.000014 199.999961 0.250000012 9.61714E-7 7080 
0.5 150.000007 200.000022 0.249999987 1.06554E-6 9360 
0.7 150.000007 199.999986 0.249999996 9.34123E-7 16080 

Global 
minimum 

0.9 − − − − − Unstable 

The simulations show that success (the ability to recover the benchmark parameters) is 
strongly dependent upon the PSO control weights. Furthermore, the successful runs (those 
which attain 6102 −×≤pφ ) provide differences in the 8th significant digit. It worth mentioning 
that, in spite of the high success rate, PSO requires a huge number of fitness evaluations, as 
indicates Figure 3 and Table 5 and 6.  
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3.3 The hybrid PSO – NM identification strategy 
In spite of the high success rate, the high computational cost of the PSO method has 

motivated further investigation on hybrid approaches. In the present work, one intends to 
combine (i) the good PSO performance to approach the neighbourhood of the optimal point 
with (ii) the relatively small number of fitness computations required by the Nelder-Mead 
technique to obtain the minimum itself. The hybrid strategy splits the identification problem 
into two stages: (A) in the first stage, the PSO technique is applied until a stopping criterion is 
attained, followed by (B) application of the NM method using the best PSO particle as the 
initial estimate. There are several ways to define the PSO stopping criterion and two cases 
were investigated in this work: 

Case 1: The parametric dispersion index reaches 15.0≤dφ .

Case 2: The PSO iterative step attains k = 10.

The PSO control weights used in the first stage are w = 0.5 and ϕ1 = ϕ2 = 1.0 for a total 
number of particles, np  = 120. In order to evaluate a possible effect of the random character of 
the process, 5 PSO runs were performed using the aforementioned control parameters.  

The PSO results for Case 1 is presented in Table 7, which indicates the PSO run with the 
corresponding number of solution steps and fitness computations when the parametric 
dispersion index reaches the established criterion. The second stage uses the parameters 
indicated in Table 7 as the initial NM estimate. The simulations show a 100% success rate at 
the end of stage (B), i.e. the benchmark parameters were obtained in all NM runs. In addition, 
the number of fitness evaluations was remarkably small, as shown in Table 8.  

Table 7: Case 1– stage (A): initial estimates for the Nelder-Mead based on the dispersion index, φd < 0.15 

Parameter 
Run Step PSO fitness 

evaluations dφ
0σ  [MPa] k n 

1 10 1320 0.091345 148.496300 213.492918 0.248660585 
2 8 1080 0.145975 150.330376 190.051678 0.251763496 
3 10 1320 0.142570 150.678832 193.292638 0.250914858 
4 10 1320 0.125507 150.672116 195.420749 0.250248172 
5 7 960 0.147745 149.518517 199.807439 0.252852869 

Table 8: Case 1– stage Stage (B): final parameters for the hybrid PSO – NM scheme. 

Fitness evaluations Parameter 
Run 

PSO NM  PSO-NM 0σ  [MPa] k n 

1 1320 237 1557 149.999985 200.000077 0.25000000 
2 1080 228 1308 150.000006 199.999908 0.25000000 
3 1320 201 1521 150.000005 199.999997 0.25000000 
4 1320 207 1527 149.999997 200.000000 0.25000000 
5 960 209 1169 149.999992 200.000115 0.25000000 
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Case 2 uses the parameters corresponding to the best particle of the 10th PSO iterative step 
as the initial NM estimate. In this case, the number of fitness computations for stage (A) is the 
same for all 5 runs, as presented in Table 9. The final NM parameters of stage (B) are shown 
in Table 10, which highlights NM and PSO-NM combined fitness evaluations. As in Case 1, 
the PSO-NM hybrid scheme was successful in all 5 runs. 

Table 9: Case 2– stage (A): initial estimates for the Nelder-Mead using parameters of the 10th PSO step 

Parameter 
Run Step PSO fitness 

evaluations dφ
0σ  [MPa] k n 

1 10 1320 0.091345 148.496300 213.492918 0.248660585 
2 10 1320 0.103802 150.075426 197.549246 0.250243651 
3 10 1320 0.142570 150.678832 193.292638 0.250914858 
4 10 1320 0.125507 150.672116 195.420749 0.250248172 
5 10 1320 0.137576 150.844119 190.616571 0.251063031 

Table 10: Case 2– stage Stage (B): final parameters for the hybrid PSO – NM scheme 

Fitness evaluations Parameter 
Run 

PSO NM  PSO-NM 0σ  [MPa] k n 

1 1320 237 1557 149.999985 200.000077 0.25000000 
2 1320 229 1308 150.000002 200.000027 0.25000000 
3 1320 195 1521 149.999998 200.000002 0.25000000 
4 1320 219 1527 149.999997 200.000000 0.25000000 
5 1320 261 1169 150.000009 199.999918 0.25000000 

A successful recover of the benchmark parameters was achieved for all 5 sole PSO runs 
with an average number of fitness computations of 7000. The sole application of the Nelder-
Mead method has yielded an average of 5500 fitness computations for a success, but it has 
required many re-initializations, which makes an 8.3 % run success rate. Tables 8 and 10 
show that the hybrid PSO – NM technique achieved also a 100 % success rate with an average 
number of fitness evaluations around 1500. Therefore, the following aspects can be 
considered:  

• The sole application of the PSO algorithm has yielded a high success rate, but at 
high computational cost. 

• The sole application of the NM technique presented a poor success rate; however, 
for the upper and lower limits given in Table 2, the average number of fitness 
computations for a successful run was smaller than sole use of the PSO method. 

• The hybrid PSO – NM technique was found to be the best option since it combined 
high success rates and reduced number of fitness computations. The reduction in 
the number of fitness evaluations was 79 % and 72 % when compared to using PSO 
and NM, respectively.  
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4 CONCLUDING REMARKS 
The present work propounds a hybrid PSO – NM technique to obtaining hardening 

parameters based on the assessment of a deep drawing benchmark problem. Despite high 
computational cost, the dynamics of the PSO algorithm has led to a high success rate, i.e., the 
optimization procedure was able to recover the benchmark parameters for a fairly large range 
of its control parameters. The sole application of the Nelder-Mead method has shown strongly 
dependent on the initial estimates; i.e., in the present example, success was achieved only if 
the initial parameters are sufficiently close to the benchmark values. The hybrid PSO – NM 
method combined the ability of the PSO algorithm to converge towards the minimum with a 
high success rate with the capacity of the NM method to reduce the number of fitness 
computations significantly. 
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