600 research outputs found

    Charged three-body system with arbitrary masses near conformal invariance

    Full text link
    Within an adiabatic approximation to the three-body Coulomb system, we study the strength of the leading order conformaly invariant attractive dipole interaction produced when a slow charged particle q3q_3 (with mass m3m_3) is captured by the first excited state of a dimer [with individual masses and charges (m1,q1(m_1,q_1) and (m2,q2=−q1m_2,q_2=-q_1)]. The approach leads to a universal mass-charge critical condition for the existence of three-body level condensation, (m1−1+m2−1)/[(m1+m2)−1+m3−1]>∣q1/(24q3)∣{(m_1^{-1}+m_2^{-1})}/ {[(m_1+m_2)^{-1}+m_3^{-1}]}>|{q_1}/(24 q_3)|, as well as the ratio between the geometrically scaled energy levels. The resulting expressions can be relevant in the analysis of recent experimental setups with charged three-body systems, such as the interactions of excitons, or other matter-antimatter dimers, with a slow charged particle.Comment: 5 pages, 1 figure, to appear in Physical Review

    Critical numbers of attractive Bose-condensed atoms in asymmetric traps

    Full text link
    The recent Bose-Einstein condensation of ultracold atoms with attractive interactions led us to consider the novel possibility to probe the stability of its ground state in arbitrary three-dimensional harmonic traps. We performed a quantitative analysis of the critical number of atoms through a full numerical solution of the mean field Gross-Pitaevskii equation. Characteristic limits are obtained for reductions from three to two and one dimensions, in perfect cylindrical symmetries as well as in deformed ones.Comment: 5 pages, 3 figures. To appear in Phys. Rev.

    Path Dependence of the Quark Nonlocal Condensate within the Instanton Model

    Full text link
    Within the instanton liquid model, we study the dependence of the gauge invariant two--point quark correlator on the path used to perform the color parallel transport between two points in the Euclidean space.Comment: 4 pages, 5 figure

    Nucleon-nucleon scattering within a multiple subtractive renormalization approach

    Get PDF
    A methodology to renormalize the nucleon-nucleon interaction, using a recursive multiple subtraction approach to construct the kernel of the scattering equation, is presented. We solve the subtracted scattering equation with the next-leading-order (NLO) and next-to-next-leading-order (NNLO) interactions. The results are presented for all partial waves up to j=2j=2, fitted to low-energy experimental data. In our renormalizaton group invariant method, when introducing the NLO and NNLO interactions, the subtraction energy emerges as a renormalization scale and the momentum associated with it comes to be about the QCD scale (ΛQCD\Lambda_{QCD}), irrespectively to the partial wave.Comment: Final versio

    Two definitions of the electric polarizability of a bound system in relativistic quantum theory

    Get PDF
    For the electric polarizability of a bound system in relativistic quantum theory, there are two definitions that have appeared in the literature. They differ depending on whether or not the vacuum background is included in the system. A recent confusion in this connection is clarified

    Liquid-Gas phase transition in Bose-Einstein Condensates with time evolution

    Full text link
    We study the effects of a repulsive three-body interaction on a system of trapped ultra-cold atoms in Bose-Einstein condensed state. The stationary solutions of the corresponding s−s-wave non-linear Schr\"{o}dinger equation suggest a scenario of first-order liquid-gas phase transition in the condensed state up to a critical strength of the effective three-body force. The time evolution of the condensate with feeding process and three-body recombination losses has a new characteristic pattern. Also, the decay time of the dense (liquid) phase is longer than expected due to strong oscillations of the mean-square-radius.Comment: 4 eps-figure

    Liquid-Gas phase transition in Bose-Einstein Condensates

    Full text link
    We study the effects of a repulsive three-body interaction on a system of trapped ultra-cold atoms in a Bose-Einstein condensed state. The corresponding s−s-wave non-linear Schr\"{o}dinger equation is solved numerically and also by a variational approach. A first-order liquid-gas phase transition is observed for the condensed state up to a critical strength of the effective three-body force.Comment: 4 pages, 3 figure
    • …
    corecore