572 research outputs found

    Principles of Interpretation of Accounting Data

    Get PDF

    Effects of experimental rewilding on butterflies, bumblebees and grasshoppers

    Get PDF
    © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.Grassland ecosystems are species-rich habitats that are rapidly declining globally posing serious concerns for biodiversity conservation. This situation is particularly relevant in agricultural areas in Europe. As traditional management practices and livestock grazing regimes ceased, rewilding could be a potential avenue to tackle current biodiversity declines. To test this hypothesis, we set up a 3-year experiment where 12 horses were introduced in three 10-hectare enclosure replicates (four horses per enclosure). Horses were kept without supplementary feeding to mimic ecosystem functions of wild horses. We applied Generalized Linear Mixed Effects Models and a backward stepwise model selection procedure to elucidate factors that modulate insect richness induced by grazing. Our results show that plant species richness, the proportion of flowers and plant height play a significant role for butterfly and bumblebee richness, while the opposite effect was detected for grasshoppers. However, the effect on grasshoppers was counterbalanced by increased grasshopper species richness in habitats adjacent to horse latrines. Rewilding with horses may offset current biodiversity declines by maintaining important functional links between plants and pollinators in grassland ecosystems. Horse grazing can however have different effects on diverse functional groups of insects. Application of integrative landscape scale approaches may be needed to elucidate the effects of rewilding for certain functional groups such as grasshoppers. With current biodiversity declines, up-scaling rewilding research and practice might be crucial to mitigate the pervasive effects on insects as their services and functions are critical for our existence.publishedVersio

    Transfer of fatty acids across the swine uterus and placenta

    Get PDF
    The transfer across the swine uterus and placenta of [1-14C] octanoic acid, [9,10(n)- H] palmitic acid, and [1- 14C] linoleic acid was studied in five gilts and their fetuses during late gestation, following a single bolus injection. Only trace amounts of labeled fatty acids were found in fetal plasma lipid. There were no measureable differences in free fatty acids (FFA) from umbilical artery, and veinous blood. Concentration of FFA in fetal blood was about 40% of the level of uterine values (187, 194, 73, and 82 µEg/1 for uterine artery, uterine vein, umbilical artery, and umbilical vein). In addition, fetal plasma contained larger amounts of 14:0, 16:1, 18:1, and 20:4, whereas maternal plasma contained larger amounts of 18:0 and 18:2. These results indicate that only trace amounts of FFA cross the swine utero-placental unit during late gestation, which are probably not enough to increase energy supply or lipid storage of the fetus.; Swine Day, Manhattan, KS, November 21, 198

    Remote Sensing of Pasture Quality

    Get PDF
    Worldwide, farming systems are undergoing significant changes due to economic, environmental and social drivers. Agribusinesses must increasingly deliver products specified in terms of safety, health and quality. Increasing constraints are being placed on them by the market, the community and by government to achieve a financial benefit within social and environmental limits (Dynes et al. 2003). In order to meet these goals, producers must know the quantity and quality of the inputs into their feeding systems, be able to reliably predict the products and by-products being generated, and have the skills to be able to manage their business accordingly. Easy access to accurate and objective evaluation of forage is the first key component to meeting these objectives in livestock systems (Dynes et al. 2003) and remote sensing has considerable potential to be informative and cost-effective (Pullanagari et al. 2012b)

    Correction due to finite speed of light in absolute gravimeters

    Full text link
    Correction due to finite speed of light is among the most inconsistent ones in absolute gravimetry. Formulas reported by different authors yield corrections scattered up to 8 ÎĽ\muGal with no obvious reasons. The problem, though noted before, has never been studied, and nowadays the correction is rather postulated than rigorously proven. In this paper we make an attempt to revise the subject. Like other authors, we use physical models based on signal delays and the Doppler effect, however, in implementing the models we additionally introduce two scales of time associated with moving and resting reflectors, derive a set of rules to switch between the scales, and establish the equivalence of trajectory distortions as obtained from either time delay or distance progression. The obtained results enabled us to produce accurate correction formulas for different types of instruments, and to explain the differences in the results obtained by other authors. We found that the correction derived from the Doppler effect is accountable only for 23\frac23 of the total correction due to finite speed of light, if no signal delays are considered. Another major source of inconsistency was found in the tacit use of simplified trajectory models

    MAES Service Case: Wetland ecosystem condition mapping (v.1.0)

    Get PDF
    SWOS Technical publicationThe MAES working group is preparing the workshop on “ecosystem condition mapping” to streamline the efforts done so far with regards to the mapping and assessment of the condition of Europe’s ecosystems. The MAES WG has requested directly to SWOS partners a specific document to support the mapping and assessing wetland ecosystem condition for this workshop. This document shall highlight the different elements to take into account for the mapping and assessment of wetland ecosystems with the aim of supporting Member States and the European Commission in their efforts to better describe the situation of wetland ecosystems in Europe. This document represents the major output of the MAES Service case that shall show how SWOS outputs are useful to support the MAES WG with regards to wetland ecosystem mapping and assessment

    Stability and Electronic Properties of TiO2 Nanostructures With and Without B and N Doping

    Full text link
    We address one of the main challenges to TiO2-photocatalysis, namely band gap narrowing, by combining nanostructural changes with doping. With this aim we compare TiO2's electronic properties for small 0D clusters, 1D nanorods and nanotubes, 2D layers, and 3D surface and bulk phases using different approximations within density functional theory and GW calculations. In particular, we propose very small (R < 0.5 nm) but surprisingly stable nanotubes with promising properties. The nanotubes are initially formed from TiO2 layers with the PtO2 structure, with the smallest (2,2) nanotube relaxing to a rutile nanorod structure. We find that quantum confinement effects - as expected - generally lead to a widening of the energy gap. However, substitutional doping with boron or nitrogen is found to give rise to (meta-)stable structures and the introduction of dopant and mid-gap states which effectively reduce the band gap. Boron is seen to always give rise to n-type doping while depending on the local bonding geometry, nitrogen may give rise to n-type or p-type doping. For under coordinated TiO2 surface structures found in clusters, nanorods, nanotubes, layers and surfaces nitrogen gives rise to acceptor states while for larger clusters and bulk structures donor states are introduced

    Enhanced Platelet Activation Mediates the Accelerated Angiogenic Switch in Mice Lacking Histidine-Rich Glycoprotein

    Get PDF
    BACKGROUND: The heparin-binding plasma protein histidine-rich glycoprotein (HRG; alternatively, HRGP/HPRG) can suppress tumor angiogenesis and growth in vitro and in vivo. Mice lacking the HRG gene are viable and fertile, but have an enhanced coagulation resulting in decreased bleeding times. In addition, the angiogenic switch is significantly enhanced in HRG-deficient mice. METHODOLOGY/PRINCIPAL FINDINGS: To address whether HRG deficiency affects tumor development, we have crossed HRG knockout mice with the RIP1-Tag2 mouse, a well established orthotopic model of multistage carcinogenesis. RIP1-Tag2 HRG(-/-) mice display significantly larger tumor volume compared to their RIP1-Tag2 HRG(+/+) littermates, supporting a role for HRG as an endogenous regulator of tumor growth. In the present study we also demonstrate that platelet activation is increased in mice lacking HRG. To address whether this elevated platelet activation contributes to the increased pathological angiogenesis in HRG-deficient mice, they were rendered thrombocytopenic before the onset of the angiogenic switch by injection of the anti-platelet antibody GP1bα. Interestingly, this treatment suppressed the increase in angiogenic neoplasias seen in HRG knockout mice. However, if GP1bα treatment was initiated at a later stage, after the onset of the angiogenic switch, no suppression of tumor growth was detected in HRG-deficient mice. CONCLUSIONS: Our data show that increased platelet activation mediates the accelerated angiogenic switch in HRG-deficient mice. Moreover, we conclude that platelets play a crucial role in the early stages of tumor development but are of less significance for tumor growth once angiogenesis has been initiated
    • …
    corecore