64 research outputs found

    First-principles investigation of phonon softenings and lattice instabilities in the shape-memory system Ni2MnGa

    Get PDF
    Ferromagnetic Ni2MnGa has unique magnetoelastic properties. These are investigated by detailed computational studies of the phonon-dispersion curves for the non-modulated cubic L21 and tetragonal structures. For the L21 structure, a complete softening of the transverse-acoustic mode has been found around the wave vector q=[1/3,1/3,0](2Ï€/a). The softening of this TA2 phonon mode leads to the premartensitic modulated superstructure observed experimentally. Further phonon anomalies, related to other structural transformations in Ni2MnGa, have also been found and examined. These anomalies appear to be due to the coupling of particular acoustic-phonon modes and optical modes derived from Ni.Peer reviewe

    Structural, electronic and magnetic properties of SrRuO3_3 under epitaxial strain

    Full text link
    Using density functional theory within the local spin density approximation, structural, electronic and magnetic properties of SRO are investigated. We examine the magnitude of the orthorhombic distortion in the ground state and also the effects of applying epitaxial constraints, whereby the influence of large (in the range of ±4\pm 4%) in-plane strain resulting from coherent epitaxy, for both [001] and [110] oriented films, have been isolated and investigated. The overall pattern of the structural relaxations reveal coherent distortions of the oxygen octahedra network, which determine stability of the magnetic moment on the Ru ion. The structural and magnetic parameters exhibit substantial changes allowing us to discuss the role of symmetry and possibilities of magneto-structural tuning of \SRO-based thin film structures.Comment: 11 page

    Chemical Raman Enhancement of Organic Adsorbates on Metal Surfaces

    Get PDF
    Using a combination of first-principles theory and experiments, we provide a quantitative explanation for chemical contributions to surface-enhanced Raman spectroscopy for a well-studied organic molecule, benzene thiol, chemisorbed on planar Au(111) surfaces. With density functional theory calculations of the static Raman tensor, we demonstrate and quantify a strong mode-dependent modification of benzene thiol Raman spectra by Au substrates. Raman active modes with the largest enhancements result from stronger contributions from Au to their electron-vibron coupling, as quantified through a deformation potential, a well-defined property of each vibrational mode. A straightforward and general analysis is introduced that allows extraction of chemical enhancement from experiments for specific vibrational modes; measured values are in excellent agreement with our calculations.Comment: 5 pages, 4 figures and Supplementary material included as ancillary fil

    Lattice dynamics and structural stability of ordered Fe3Ni, Fe3Pd and Fe3Pt alloys

    Full text link
    We investigate the binding surface along the Bain path and phonon dispersion relations for the cubic phase of the ferromagnetic binary alloys Fe3X (X = Ni, Pd, Pt) for L12 and DO22 ordered phases from first principles by means of density functional theory. The phonon dispersion relations exhibit a softening of the transverse acoustic mode at the M-point in the L12-phase in accordance with experiments for ordered Fe3Pt. This instability can be associated with a rotational movement of the Fe-atoms around the Ni-group element in the neighboring layers and is accompanied by an extensive reconstruction of the Fermi surface. In addition, we find an incomplete softening in [111] direction which is strongest for Fe3 Ni. We conclude that besides the valence electron density also the specific Fe-content and the masses of the alloying partners should be considered as parameters for the design of Fe-based functional magnetic materials.Comment: Revised version, accepted for publication in Physical Review

    Effects of Magnetovolume and Spin-orbit Coupling in the Ferromagnetic Cubic Perovskite BaRuO3

    Full text link
    BaRuO3 having five different crystal structures has been synthesized by varying the pressure while sintering. Contrary to the other phases being nonmagnetic, the cubic perovskite phase synthesized recently shows an itinerant ferromagnetic character. We investigated this ferromagnetic BaRuO3 using first principles calculations. A few van Hove singularities appear around the Fermi energy, causing unusually high magnetovolume effects of ΔM/Δa\Delta M/\Delta a ~ 4.3 μB\mu_B/\AA as well as a Stoner instability [IN(0) ~ 1.2]. At the optimized lattice parameter a, the magnetic moment M is 1.01 μB\mu_B in the local spin density approximation. When spin-orbit coupling is included, the topologies of some Fermi surfaces are altered, and the net moment is reduced by 10% to a value very close to the experimentally observed value of ~ 0.8 μB\mu_B. Our results indicate that this ferromagnetism is induced by the Stoner instability, but the combined effects of the p-d hybridization, the magnetovolume, and the spin-orbit coupling determine the net moment. In addition, we briefly discuss the results of the tight-binding Wannier function technique.Comment: 5 pages and 5 embedded figures; proceedings of ICM 201
    • …
    corecore