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First-principles investigation of phonon softenings and lattice instabilities in the shape-memory
system Ni2MnGa
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Ferromagnetic Ni2MnGa has unique magnetoelastic properties. These are investigated by detailed compu-
tational studies of the phonon-dispersion curves for the non-modulated cubic L21 and tetragonal structures. For
the L21 structure, a complete softening of the transverse-acoustic mode has been found around the wave vector
q5@1/3,1/3,0#(2p/a). The softening of this TA2 phonon mode leads to the premartensitic modulated super-
structure observed experimentally. Further phonon anomalies, related to other structural transformations in
Ni2MnGa, have also been found and examined. These anomalies appear to be due to the coupling of particular
acoustic-phonon modes and optical modes derived from Ni.

DOI: 10.1103/PhysRevB.68.132402 PACS number~s!: 63.20.Dj, 61.66.2f, 63.20.Kr

Displacive, diffusionless structural transformations of the
martensitic type are known to occur in many metallic alloys.
These transformations involve cooperative rather than diffu-
sive displacements of atoms and are often associated with
phonon anomalies in the parent phase and related precursor
phenomena. It is a general challenge of fundamental physics
to explain driving forces of the martensitic transformations.

Since the discovery of a martensitic transformation in fer-
romagnetic Ni2MnGa,1 this material has attracted strong
interest.2 This Heusler alloy is one of very rare magnetic
materials which undergo a martensitic transformation below
the Curie temperature, whereby the combination of magnetic
and structural features is responsible for its unique magneto-
mechanical properties. Shear deformations of more than 5%
have been obtained in magnetic fields.3–5 These features to-
gether make Ni2MnGa very efficient for magnetic-shape-
memory~MSM! technology.6 The MSM technology is based
on the magnetic-field-induced redistribution of martensitic
domains in the sample. From the technological point of view,
Ni2MnGa is much more promising than other materials be-
ing presently in commercial use, for example, the well-
known material Tb-Dy-Fe~Terfenol-D! which exhibits mag-
netostrictive strains of about 0.1%. Design of new efficient
MSM magnetomechanical actuator devices is in progress.7

Also, the search for new materials with magnetic shape-
memory effects is underway, even in antiferromagnets.8

Despite the experimental and technological success, a mi-
croscopic theory is missing, which would be able to show
how far the premartensitic phase transition will result from
the coupling of soft-phonon modes and homogeneous strains
associated with the shear constantC8.9,10A complete under-
standing requires the evaluation of the phonon spectrum. The
aim of this paper is to present supercell phonon calculations
for the L21 and T structures~see Fig. 1 and Table I! using a
state-of-the-art first-principles method based on density-
functional theory.

Ni2MnGa is ferromagnetic at room temperature (TC
'380 K) and undergoes a two-step martensitic phase trans-

formation. As a matter of fact, a number of different thermal-
and stress-induced martensitic structures have been observed
in Ni2MnGa.11 Table I gives a summary of the structures
found for Ni2MnGa.1,10,11 In the parent phase, several pho-
non anomalies can be observed with decreasing temperature.
At the temperatureT'260 K, a nearly complete softening of
the @1/3,1/3,0#(2p/a) transverse-acoustic TA2 mode with
polarization along@11̄0# leads to a premartensitic phase
transition, which has been evidenced by
neutron-scattering,10,12–14x-ray,15 electron microscopy,16 and
ultrasonic measurements17,18 or a combination of the previ-
ous methods.19 This structural transformation involves a
commensurate periodic distortion of the parent phase with a
propagation vector equal to that of the soft modeq
5@1/3,1/3,0#(2p/a) corresponding to six atomic planes or

FIG. 1. ~a! Simple cubic cell of Ni2MnGa ~Heusler L21 struc-
ture!; ~b! tetragonal body-centered-tetragonal cell in the@110# di-
rection. The equilibrium lattice parameter obtained isacubic

55.8067 Å and agrees with the experimental value, Ref. 1. The
direction @010#orth of the supercell corresponds to the direction
@110#cubic of the cubic structure. As the supercell consists of five
tetragonal cells, the lattice parameters of the supercell are related to
the lattice parameters of the cubic L21 structure as follows:aorth

5(1/A2)acubic, borth5(5/A2)acubic, andcorth5acubic.
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three lattice spacings. The precursor phenomena involve the
magnetoelastic coupling as it has been described using
Landau-type models.20 These phenomenological models take
as input very important lattice-dynamical properties. Thus,
explicit calculation of the lattice dynamics is required since
in transition metals, thed electrons allow for many types of
coupling, and several modes can be involved.

For the sake of simplicity, we present phonon calculations
for the direction@110#, which is the most interesting one as
seen from the measurements for the acoustic modes.13 We
have used the direct method for the evaluation of the
phonon-dispersion curves,21,22 whereby the Hellmann-
Feynman forces are calculated with the Viennaab initio
simulation package23,24 ~VASP! and the implemented pro-
jected augmented wave formalism~PAW!.25 Within density-
functional theory, the electronic exchange and correlation are
treated by using the generalized gradient approximation. The
3d electrons of Ga have been included as valence states. The
importance of using PAW for Ni2MnGa instead of pseudo-
potentials has been pointed out earlier.26 An orthorhombic
supercell of 40 atoms formed by five tetragonal crystallo-
graphic unit cells, as seen in Fig. 1~b!, has been used to
calculate the phonon spectrum for the@110# direction.27 The
direct method implies that we calculate forces induced on all
atoms of the supercell when a single atom is displaced from
its equilibrium position. Displacement of the atoms in only
one tetragonal unit cell along all directions allows one to
derive the force-constant matrix and the dynamical matrix.
Diagonalization of the dynamical matrix then leads to a set
of eigenvalues for the phonon frequencies and corresponding
eigenvectors. The calculations have been done by using an
amplitude for the displacements ofu50.03 Å. This value is
sufficient to calculate the forces with required precision and
to fulfill the conditions of the harmonic approximation.

Phonon-dispersion curves calculated for Ni2MnGa in the
@110#cubic direction are shown in Fig. 2~a!. The acoustic
modes are qualitatively and quantitatively in very good
agreement with experimental results obtained from inelastic
neutron scattering.13 For instance, following the acoustic
branch, the values of the TA2 branch atz51, of the crossing
between LA and TA1 branch, and of the maximum of the LA

branch are 2.33, 4.43 and 5.13 THz, in good agreement with
the experimental ones, 2.67, 4.35, and 5.07 THz.13 The initial
slopes of the curves in the longitudinal (vL55.23
3105 m/s) and transverse (vTA1

53.353105 m/s;vTA2

51.023105 m/s) modes agree well with the sound veloci-
ties measured via the neutron-scattering dispersion curves.13

The slope of the phonon-dispersion curves around theG
point is positive, which is consistent with the stability around
this phase.

We find a complete softening of the transverse-acoustic
TA2 phonon mode betweenz50.2 andz50.55. This soften-
ing occurs around the wave-vector coordinatez51/3, which
corresponds to the soft-mode phonon anomaly observed in
the experimental studies.13 We point out that the experimen-
tally observed premartensitic transition is related to this soft
mode.

The softening of the TA2 mode means that the cubic L21
high-temperature structure is unstable at zero temperature
with respect to a particular atomic displacement leading to
the formation of a modulated premartensitic structure. The
3L structure can be modeled by a large supercell composed
of three basic body-centered-tetragonal supercells in the
@110# direction ~see Fig. 3!.28 The atoms of the input struc-
ture have a modulated amplitude with a maximum around
0.05 Å where the Ni atoms are in opposite phase to the Mn
and Ga atoms. Full relaxation of the three lattice parameters
a, b, andc has been allowed. Also, lower magnetizations of
60–80 % of the full magnetization value for the whole su-
percell has been taken into account. In addition, two periods
commensurate with the lattice were tested, but the structure
with one period, as shown in Fig. 3, gives the minimum
energy. The static displacements of the 3L modulated struc-
ture are shown in Fig. 3~b!. The modulation of the atoms
stays in phase which differs from the input data, but it is
typical for an acoustic branch such as TA2. The amplitudes

TABLE I. Structural parameters of the crystal structures of Ni-
Mn-Ga alloys according to Ref. 11 and this work. They follow
~from left to right! the order of possible appearance when lowering
the temperature. There is a superimposed modulation specified by
the notationnL, wheren stands for the close commensurate number
of body-centered-tetragonal cells in the@110# direction; their re-
spectiveq vectors are in units of (2p/a). The so-called premarten-
sitic transformation happens between the L21 and 3L structures.

Axes Lattice parameters~Å!

L21 3L 5L 7L T
a 5.824 5.824 5.90 6.12 6.44
b 5.824 5.824 5.90 5.78 5.52
c 5.824 5.824 5.54 5.54 5.52
Modulation None q'0.33 q'0.43 None
Tetragonality 1 1 0.94 ' 1.2

FIG. 2. Phonon-dispersion curves for the cubic L21 structure~a!
and the tetragonal T structure~b! of Ni2MnGa. Here, the reduced
wave-vector coordinatez spans the fcc Brillouin zone fromG to X.
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for all the atoms are nearly the same, although they differ
slightly but not according to the atom masses. Rather, the
order is according to the sequence of the optical-phonon en-
ergies, where Ni has the lowest energy, optical modes of Ga
are in the next energy windows, and Mn optical phonons are
of the highest energy~see Fig. 2!.

We have considered so far only the acoustic mode TA2,
because this mode is responsible for the phase transforma-
tion L21→3L. However,~see Fig. 2! the other two acoustic
modes TA1 and LA are coupled to the low-lying optical
modes of Ni. Figure 4 shows how this coupling affects the
behavior of the polarization vectors of Ga for its acoustic
modes. The Ga atom type have been chosen for clarity, while
acoustic modes of the other atoms show similar trends. Fig-
ure 4 illustrates that the acoustic-optical hybridization~com-
pare with Fig. 2! leads to a number of anomalies, which
occur at the corresponding wave-vector coordinatesz50.3,

z50.43, andz50.715. A longitudinal-phonon optical mode
can be associated with a charge-density wave, which gives a
sharp peak in the magnetic susceptibilityx(q). The crossing
at z50.43 compares well with those for which anomalies are
observed in the susceptibility calculations, which have been
associated with the lattice instabilities in the 5L and 7L
structures.29,30 These crossings correlate in a natural way
with the change of theC44 elastic constant, which is, as it
turns out, not related to the TA2 branch through the pre-
martensitic transformation. It comes that the involvement of
the optical modes is required in order to understand the
phase transformations in these alloys.

It is interesting to note that the anomaly in the TA2 branch
has been found around the soft mode@1/3,1/3,0#(2p/a) in
our calculations, which is the wave vector associated with
the phonon anomaly of the premartensitic transition.13 Also,
the phonon branches on the@110# direction for the T struc-
ture are given in Fig. 2~b!. In the latter case, the branches
TA2 and TA1 become similar and the softening of the TA2

branch, present in the cubic phase, disappears. This finding is
consistent with the stability of the T structure31 and adds
insight into interpreting the experiments.19 The sequence of
the optical modes is different in this case and they are not
degenerate at theG andX points. The instability of the cubic
structure at zero temperature is the clue to understand how
the martensite phase may nucleate. Instead of twinnings and
stacking faults, the modulation of the martensitic tetragonal
structure of Ni2MnGa corresponds to a smaller structural
change easier to accommodate or to derive from the parent
cubic structure. With respect to the electronic structure, the
lowering of the symmetry allows for a splitting of the
density-of-states peak at the Fermi level,10,31 thereby de-
creasing the valence-band energy contribution to the total
energy. Thus, structural modulation and lowering of the elec-
tronic energy explains the 5L structure of Ni2MnGa.32

On the other hand, the recent susceptibility
calculations29,30 have shown that the peak in the generalized
susceptibility atq5@z,z,0#(2p/a) for z50.33 corresponds
to a magnetization of about 60%. This susceptibility peak
moves toward higher values ofz as the magnetization in-
creases: full magnetization leads to a peak atz50.4. How-
ever our calculations show no need for the extra magnetiza-
tion hypothesis, since all the interestingq vectors are already
present. This casts serious doubts on the role of magnetiza-
tion in these intermediate or premartensitic transitions. Sec-
ond, this finding reinforces the arguments that the elastic
entropy term drives the transition33 and the spin spirals do
not show anomalies involved in the shuffling of the L21
structure.34 In view of these results, the intermediate and the
martensitic transition seem to be really independent, al-
though, of course, the L21 structure is necessary in order to
have the intermediate transformation atz50.33.

In summary, we have calculated the phonon dispersion for
two structures of Ni2MnGa: the cubic L21 and the tetragonal
T at zero temperature. The cubic structure is found to be
unstable with respect to a specific rearrangement~shuffling!
of the atoms which leads to a modulated superstructure 3L.
We have calculated stability of the 3L structure with high

FIG. 3. Displacements of the 3L premartensitic modulated struc-
ture: before~a! and after~b! structural relaxation. The atoms are
displaced parallel toaorth in successive (010)orth planes. The dis-
placements are in a different scale in order to be observed.

FIG. 4. Polarization vectors corresponding to the acoustic-
phonon modes of Ga. The peaks atz50.300, z50.433, andz
50.715 are due to the coupling to the optical modes of Ni.
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accuracy and found that it reflects perfectly our phonon cal-
culations. Furthermore, we have shown that the subtle com-
petition of low-lying optical modes of Ni and acoustic modes
account for the experimentally observed wave vectors, for
which anomalies have been observed (3L, 5L, and 7L struc-
tures!. These calculations have been done by using first-
principles methods, and are in very good agreement with
experimental findings.
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18L. Mañosa, A. Gonza`lez-Comas, E. Obrado´, A. Planes, V.A.
Chernenko, V.V. Kokorin, and E. Cesari, Phys. Rev. B55,
11 068~1997!.
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