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We give a short review of first-principles computational investigations carried out on the high-
performance supercomputer facility JUMP at the Forschungszentrum Jülich. Within the frame-
work of Density Functional Theory (DFT) and Density Functional Perturbation Theory (DFPT)
we calculate force constants and phonon spectra of various Heusler alloys and Fe based Invar
materials using the ViennaAb Initio Simulation Package (VASP) and the Plane Wave Self-
Consistent Field (PWSCF) method.

1 Introduction

Recent technological developments concerning “smart materials” show that a microscopic
understanding on anab initio basis is needed, for example, for a breakthrough in the field
of magnetic shape memory (MSM) alloys recently discovered1. Magnetic Heusler alloys
exhibit the MSM effect with magnetic-field-induced strainsup to 10%, which opens a field
of tremendous technological applications. In order to understand this effect, a detailed
knowledge of the difference between structurally stable and unstable Heusler alloys on a
microscopic scale is needed. In this investigation we concentrate on two kinds of systems,
ternary Heusler alloys and binary alloys like Fe3Ni and Fe3Pt, which in turn will be shown
to behave in similar manner to the Heusler systems.

2 Method

2.1 First-Principles Calculations

The Vienna ab inito Simulation Package2, 3 (VASP) has been used to perform the electronic
structure calculations. The projector-augmented wave formalism (PAW) implemented in
this package3 leads to very accurate results comparable to other all-electron methods. The
electronic exchange and correlation are treated within density functional theory by using
the generalized gradient approximation. The expansion of the electronic wave-functions in
terms of plane waves was done using the “High Precision” option, which corresponds to the
kinetic energy cutoff as high as 337.3 eV or more, depending on the system. Integrations
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Figure 1. On top: (a) A conventional tetragonal cell used in the electronic structure calculation of Heusler alloys
and (b) corresponding supercell used in the phonon calculation. All Hesuler compounds considered in this work
have the same structure and formula unit X2YZ. Below: (c) The L12(Cu3Au) structure with unit cell of space
group Pm̄3m number 221, (O1

h
cubic) of Fe3Ni (Fe3Pt) used in the electronic structure calculations. (d) The

4 × 4 × 4 supercell containing 256 atoms (192 Fe- and 64 Ni-atoms) used in the direct force constants method
for the calculation of phonon dispersions using the packages PHONON4+VASP2 and (e) the D03 structure (bcc)
with unit cell space group Fm̄3 m (O5

h
) of AlFe3

5.

over the whole Brillouin zone were performed using specialk-points. For Heusler alloys,
the electronic structure calculations were done using the conventional tetragonal cell (see
Fig. 1(a) ) with a high density ofk-point mesh of 12×12×10 points. For the phonon
calculations in a 1×5×1 supercell (see Fig. 1(b)) thek-points mesh was 10×2×8. While
the dimensions of the supercell are given with respect to theconventional tetragonal cell.

For binary alloys of Fe3Ni and Fe3Pt (fcc cell of L12 and bcc-like D03 structures, see
Fig. 1(a and c)) we used a Monkhorst-Pack grid of 12×12×12 k-points while a 2×2×2
mesh was used for the phonon calculations of fcc Fe3Ni shown in Fig. 1(d).

2.2 Phonon Calculations

2.2.1 Direct Method

In order to calculate the phonon dispersions we have used thedirect force constant method4

with forces determined from total energy calculations by using the Hellmann-Feynman the-
orem. The reference lattice parameters (a = b = c) refer to the conventional cubic (CC)
L21 structure of the Heusler alloys, all crystallographic directions in this work are specified
with respect to the CC cell. While the calculations were doneusing smaller conventional
tetragonal (CT) cell with lattice parametersat = bt = a/

√
2, ct = c (see Fig. 1(a)).
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System a
L12

(Å) (fcc) a
D03

(Å) (bcc-like)
Fe3Ni 3.58785644 5.71118938
Fe3Pt 3.60052116 5.93777408

Table 1. Lattice parameters obtained from VASP calculations for the L12 (fcc) and the D03 (bcc-like) structure
for Fe3Ni and Fe3Pt in the ferromagnetic state.

The phonon calculations for Heusler alloys were done with anelongated 1×5×1 super-
cell based on the CT cell, see Fig. 1(b). The supercell is subject to periodic boundary
conditions and has orthorhombic symmetry. Five CT cells were joined together along
[110] giving ten subsequent (110) atomic planes along the [110] direction. Displace-
ments of each single atom induce forces acting on all other atoms within the supercell,
which yields the force-constant matrix and, consequently,the phonon frequencies and cor-
responding eigenvectors. In this work, 1×5×1 geometry yields five points in the Brillouin
zone along the [110] direction where phonon parameters are exact. These five vectors sat-
isfy exp (2πıkL · L) = 1, whereL denotes indices of the lattice constants in the supercell
(in our case from 0 to 4, giving pointsζ = 0.0, 0.25, 0.5, 0.75, 1.0, for the normalized wave
vector [ζ, ζ, 0], which spans our Brillouin zone from its center to the boundary). For the
1×5×1 supercell, within the half supercell length (five atomic planes), the force constants
decrease by several orders of magnitude, thus being sufficient for accurate calculations of
the phonons. The atomic displacements were of the order of 0.03 Å. The force constants
have been calculated for the relaxed and completely force-free equilibrium structures, the
lattice parameters of which are given in Table 1.

The method is also applied to fcc Fe3Ni to calculate phonons along high symmetry di-
rections for the L12 structure (see Fig. 1(c)) at lattice constant 3.58795644Å obtained from
VASP calculations. The supercell used in the phonon calculation was a 4×4×4 periodic
supercell (see Fig. 1 (d)).

2.2.2 Linear Response

In the linear response method the dynamical matrix is obtained from the modification of
the electron density, via the inverse of the dielectric matrix describing the response of the
valence electron density to a periodic lattice perturbation. The dielectric matrix is then
calculated from the eigenfunctions and energy levels of theunperturbed system14. Phonon
dispersions can be determined at any wave vector in the Brillouin zone. The method has
been applied with success to Ni2MnGa6 and to alloys related to our present study6, 7.

We have applied this method to calculate the phonon density of states of Ni2MnGa
(reproducing the anomalous inversion of optical modes found previously by using the di-
rect method8) and the phonon dispersions along high symmetry for bcc-like D03 Fe3Ni,
L12 Fe3Pt and D03 Fe3Pt (crystal structures are shown in Fig. 1(c) (for fcc) and Fig 1(e)).
The phonon calculations were carried out again at the theoretical lattice constants shown
in Table 1.

For Fe and Ni in Fe3Ni we used ultrasoft pseudo-potentials generated using theex-
change correlation of Perdew-Burke-Ernzerhof (PBE); for Fe and Pt in Fe3Pt we used
pseudo-potentials generated using exchange correlation of Perdew-Zunger (see Ref. 14 for
the source).
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System a
L21

(Å) µ
total

(µ
B

) L21 Magn. order e/a

Co2MnGa 5.7100 4.14 stable FM 7.000
Co2MnGe 5.7285 4.99 stable FM 7.250
Ni2MnGa-e 5.4647 4.20 unstable FM 7.250
Co2MnGe+e 6.1957 6.02 - FM 7.500
Ni2MnGa 5.8067 4.35 unstable FM 7.500
Ni2MnAl 5.7000 4.20 unstable FM 7.500
Ni2MnIn 6.0624 4.22 unstable FM 7.500
Ni2MnGa+(e/2) 5.8668 3.96 unstable FM 7.625
Ni2MnGe 5.8039 4.10 unstable FM 7.750
Ni2MnSi 5.6041 3.78 unstable FM 7.750
Ni2CoAl 5.6041 1.78 unstable FM 8.000
Ni2CoGa 5.6865 1.54 unstable FM 8.000
Ni2CoGe 5.7067 1.45 unstable FM 8.250
Ni2CoSb 5.9411 1.34 unstable FM 8.500
Cu2MnAl 5.9153 3.51 unstable FM 7.75
Cu2MnGa 5.9701 3.61 stable FM 7.75
Cu2MnSn 6.1674 3.89 unstable FM 8.00
Ni2FeGa 5.7554 3.29 unstable FM 7.75
Ni2MnSn 6.0576 4.05 unstable FM 7.75
Co2FeGa 5.7177 5.02 stable FM 7.50
Co2MnSn 5.9837 5.03 stable FM 7.50
Ni2TiGa 5.8895 0.00 unstable NM 6.75
Fe2MnGa 5.6882 2.15 stable Ferri 6.50

Table 2. Computed lattice parameters, magnetic moments perunit cell, types of magnetic order and valence-
electron-to-atom ratios,e/a, for a series of Heusler compounds with the L21 structure (Ref. 8). ’Instability’ of
the cubic structure means here that a soft mode appears in thecalculated phonon dispersion.

In both alloys we used a kinetic energy cutoff of 50 Ry for the plane wave basis set. The
augmentation charges requiring the use of ultrasoft pseudo-potentials were expanded with
energy cutoff of 600 Ry which is high enough to yield accurateresults. Structural prop-
erties and most of the phonon frequencies are well convergedusing a first-order smearing
parameterσ = 0.02 Ry for the BZ integration. For self-consistent and non-self-consistent
calculations, a Monkhorst-Pack grid of 12×12×12 k-points was used. A set of special
q-points in the BZ with finite weight generated from Monkhorst-Pack was used for both
the fcc and the simple cubic cell. For the fcc structure we used a 4×4×4 q-point mesh
yielding 8 sets ofq-vectors with finite weight while for the simple cubic, a 2×2×2q-point
mesh was used yielding 4 sets of specialq-vectors.

3 Results and Discussions

3.1 Heusler Alloys

With the help of the supercomputer facilities of the Forschungszentrum Jülich we suc-
ceeded to obtain phonon dispersions and the electronic structure of 27 different Heusler
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Figure 2. Phonon dispersion curves of (a) FM Ni2MnGa, (b) FM Ni2MnAl, (c) FM Ni2MnGe, (d) FM Ni2MnIn
(e) FM Co2MnGa, (f) FM Co2MnGe, (g) NM Ni2TiGa and (h) FerriM Fe2MnGa in the L21 structure. Here,
the reduced wave vector coordinateζ spans the fcc Brillouin zone fromΓ to X. Imaginary frequencies of the
unstable modes are shown in the real negative frequency range. The frequency of the optical modes T2g at Γ is
marked by a black dot; note that it appears at lower values as compared to the stable systems.

structures listed in Table 2. Fig. 2 shows the dispersion curves of 8 of them. Comparison
of the phonon dispersions of Ni2MnGa with existing experimental data and calculations
by other groups employing the linear response method show that the direct method used
here yields fairly accurate results6, 9.

For the five compounds Ni2Mn(Ga, Al, In, Ge) and Ni2TiGa, the TA2 branch is unsta-
ble for some range ofζ. In addition, in Ni2MnGe the TA2 mode has a negative slope at
Γ, indicating a pure elastic instability. The instability ofthe L21 structure in NM Ni2TiGa
shows that magnetic order is not a necessary condition for the phonon softening to occur.

Figure 3 shows the force constants vs.e/a ratio for various Heusler alloys listed in
Table 2. Note that negative force Ni-Ni constants in Ni-based compounds are responsible
for the structural instability of the compounds. This leadsalso to inverted optical modes,
i.e., Ni vibrates with lower frequency compared to the heavier Ga in the optical frequancy
range. Ni vibrations are also Raman active. The Co-based systems have postive force
constants and do not undergo a martensitic transformation.
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Figure 3. The plot of Ni-Ni and Co-Co force constants vs.e/a ratio for various Heusler alloys. The structurally
unstable alloys have negative Ni-Ni force constants.

4 Fe Based Binary Alloys

The second part of this paper is concerned with Fe based binary alloys, in particular the
bcc phase of Fe3Ni.

The most prominent feature in fcc phonon dispersions, whichis similar to some of
the unstable Heusler alloys, is the instability of the TA acoustic mode which begins at
about one third of the length of the wave vector fromΓ and extends to the zone boundary
M where the softening is highly pronounced. The regionΓ-M corresponds to the [110]
direction in which the elastic softening has been observed from most experiments11–13.

It is known from experiment that the bcc phase of Fe3Ni is the stable phase. The bcc
phonon dispersion relations obtained from linear responsecalculations for Fe3Ni show
different features. As expected, the structure is perfectly stable as none of the phonon
branches in the three windows corresponding to [100], [110]and [111] directions show
softening unlike in the case of fcc dispersions. In this casethe partial contributions of the
atoms in the optical range of vibrations obey the expected order, whereby the heavier Ni
atoms vibrate at relatively low frequency as compared to Fe.

This behaviour has been a subject of systematic experimental investigations for
Fe3Ni10. Inelastic neutron scattering data clearly showed excess states of Ni at relatively
lower energies of the optical range in agreement with what weobtained from the calcula-
tions.

4.1 Comparison of the Methods

Our comparative study includes analysis of the methods we are using. The two techniques
of calculating phonons lead to very similar results, but certain differences appear (not to
be discussed here). Taking advantage of working on a supercomputer, we calculated for a
large supercell of Ni2MnGa (216 atoms) in order to obtain accurate vibrational densities of
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Figure 4. The inverse of CPU time versus the number of tasks per node for the phonon calculation of Heusler
alloys with 40 atoms using VASP.

states and compare them with what we get from the linear response calculations. We find
that both techniques show good agreement.

4.2 Performance Issues

The calculations presented in this work were carried out on the JUMP (IBM p690) super-
computer at the Forschungszentrum Jülich. From our test calculations we know that 32
processors taken on a single node is the optimal choice for our plane-wave calculations
with a 40 atoms cell. However, there are some specific demandson the hardware, which
are common to plane-wave codes. Especially for our calculations, we need a large amount
of main memory and there is a lot of data transfer between processors. Keeping this in
mind, we have done some additional calculations, showing that the data exchange between
different nodes of JUMP decreases the efficiency of the calculations considerably. Figure 4
presents data of several test we did by taking our standard 40atoms supercell with differ-
ent Heusler systems. We took 32 processors for each of these calculations, but distributed
processors among several nodes.

The situation changes, if we want to do calculations with larger cells. Our tests with a
216 atoms supercell have shown that 32 processors are not sufficient to achieve results in
reasonable time. On the other hand the distribution over thenodes becomes more efficient.
Again, the best choice is if we take complete nodes.

One has to be aware of some difficulties related to input parameters, which VASP code
provides in order to control the parallization of the code. Abad choice of the parameters
may lead to a significant reduction of the performance. Figure 4 shows such a breakdown,
which we experienced in the case of Heusler systems Ni2CoGe and Ni2CoSb, when we
used 128 processors. UsingNPAR = 128, which tells vasp to distribute all bands during
over the processors, the calculations were even slower thanon 32 processors.
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5 Concluding Remarks

From this study we have found general properties responsible for structural instabilities in
Heusler compounds and Fe-based binary alloys.

Our rough estimate of the supercomputer performance allowsto suggest that further
investigations in this project may include calculations with very large supercells allowing
the treatment of imperfections in the martensitic structure like twin variants.
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