364,061 research outputs found

    Gamma guidance of trajectories for coplanar, aeroassisted orbital transfer

    Get PDF
    The optimization and guidance of trajectories for coplaner, aeroassisted orbital transfer (AOT) from high Earth orbit (HEO) to low Earth orbit (LEO) are examined. In particular, HEO can be a geosynchronous Earth orbit (GEO). It is assumed that the initial and final orbits are circular, that the gravitational field is central and is governed by the inverse square law, and that at most three impulses are employed: one at HEO exit, one at atmospheric exit, and one at LEO entry. It is also assumed that, during the atmospheric pass, the trajectory is controlled via the lift coefficient. The presence of upper and lower bounds on the lift coefficient is considered. First, optimal trajectories are computed by minimizing the total velocity impulse (hence, the propellant consumption) required for AOT transfer. The sequential gradient-restoration algorithm (SGRA) is used for optimal control problems. The optimal trajectory is shown to include two branches: a relatively short descending flight branch (branch 1) and a long ascending flight branch (branch 2). Next, attention is focused on guidance trajectories capable of approximating the optimal trajectories in real time, while retaining the essential characteristics of simplicity, ease of implementation, and reliability. For the atmospheric pass, a feedback control scheme is employed and the lift coefficient is adjusted according to a two-stage gamma guidance law. Further improvements are possible via a modified gamma guidance which is more stable with respect to dispersion effects arising from navigation errors, variations of the atmospheric density, and uncertainties in the aerodynamic coefficients than gamma guidance trajectory. A byproduct of the studies on dispersion effects is the following design concept. For coplaner aeroassisted orbital transfer, the lift-range-to-weight ratio appears to play a more important role than the lift-to-drag ratio. This is because the lift-range-to-weight ratio controls mainly the minimum altitude (hence, the peak heating rate) of the guidance trajectory; on the other hand, the lift-to-drag ratio controls mainly the duration of the atmospheric pass of the guidance trajectory

    Invariant graphical method for electron-atom scattering coupled-channel equations

    Get PDF
    We present application examples of a graphical method for the efficient construction of potential matrix elements in quantum physics or quantum chemistry. The simplicity and power of this method are illustrated through several examples. In particular, a complete set of potential matrix elements for electron-Lithium scattering are derived for the first time using this method, which removes the frozen core approximation adopted by previous studies. This method can be readily adapted to study other many-body quantum systems

    Decomposition technique and optimal trajectories for the aeroassisted flight experiment

    Get PDF
    An actual geosynchronous Earth orbit-to-low Earth orbit (GEO-to-LEO) transfer is considered with reference to the aeroassisted flight experiment (AFE) spacecraft, and optimal trajectories are determined by minimizing the total characteristic velocity. The optimization is performed with respect to the time history of the controls (angle of attack and angle of bank), the entry path inclination and the flight time being free. Two transfer maneuvers are considered: direct ascent (DA) to LEO and indirect ascent (IA) to LEO via parking Earth orbit (PEO). By taking into account certain assumptions, the complete system can be decoupled into two subsystems: one describing the longitudinal motion and one describing the lateral motion. The angle of attack history, the entry path inclination, and the flight time are determined via the longitudinal motion subsystem. In this subsystem, the difference between the instantaneous bank angle and a constant bank angle is minimized in the least square sense subject to the specified orbital inclination requirement. Both the angles of attack and the angle of bank are shown to be constant. This result has considerable importance in the design of nominal trajectories to be used in the guidance of AFE and aeroassisted orbital transfer (AOT) vehicles

    Single-Site Vanadyl Species Isolated within Molybdenum Oxide Monolayers in Propane Oxidation

    No full text
    The cooperation of metal oxide subunits in complex mixed metal oxide catalysts for selective oxidation of alkanes still needs deeper understanding to allow for a rational tuning of catalyst performance. Herein we analyze the interaction between vanadium and molybdenum oxide species in a monolayer supported on mesoporous silica SBA-15. Catalysts with variable Mo/V ratio between 10 and 1 were studied in the oxidation of propane and characterized by FTIR, Raman, and EPR spectroscopies, temperature-programmed reduction, UV/vis spectroscopy in combination with DFT calculations, and time-resolved experiments to analyze the redox properties of the catalysts. Molybdenum oxide (sub)monolayers on silica contain mainly dioxo (Si–O−)2Mo(═O)2 species. Dilution of silica-supported vanadium oxide species by (Si–O−)2Mo(═O)2 prevents the formation of V–O–V bonds, which are abundant in the pure vanadium oxide catalyst that predominantly contains two-dimensional vanadium oxide oligomers. Existing single vanadyl (Si–O−)3V(═O) sites and neighboring (Si–O−)2Mo(═O)2 sites do not strongly interact. The rates of reduction in propane and of oxidation in oxygen are lower for single metal oxide sites compared to those for oligomers. The rate of propane oxidation correlates with the overall redox rates of the catalysts but not linearly with the chemical composition. Retarded redox behavior facilitates selectivity toward acrolein on single-site catalysts. The abundance of M–O–M bonds is more important in terms of activity and selectivity compared to the nature of the central atom (molybdenum versus vanadium)

    Nuclear RNA Surveillance in \u3cem\u3eSaccharomyces cerevisiae\u3c/em\u3e: Trf4p-dependent Polyadenylation of Nascent Hypomethylated tRNA and an Aberrant Form of 5S rRNA

    Get PDF
    1-Methyladenosine modification at position 58 of tRNA is catalyzed by a two-subunit methyltransferase composed of Trm6p and Trm61p in Saccharomyces cerevisiae. Initiator tRNA (tRNAiMet) lacking m1A58 (hypomethylated) is rendered unstable through the cooperative function of the poly(A) polymerases, Trf4p/Trf5p, and the nuclear exosome. We provide evidence that a catalytically active Trf4p poly(A) polymerase is required for polyadenylation of hypomethylated tRNAiMet in vivo. DNA sequence analysis of tRNAiMet cDNAs and Northern hybridizations of poly(A)+ RNA provide evidence that nascent pre-tRNAiMet transcripts are targeted for polyadenylation and degradation. We determined that a mutant U6 snRNA and an aberrant form of 5S rRNA are stabilized in the absence of Trf4p, supporting that Trf4p facilitated RNA surveillance is a global process that stretches beyond hypomethylated tRNAiMet. We conclude that an array of RNA polymerase III transcripts are targeted for Trf4p/ Trf5p-dependent polyadenylation and turnover to eliminate mutant and variant forms of normally stable RNAs

    The electro production of d* dibaryon

    Full text link
    d∗d^* dibaryon study is a critical test of hadron interaction models. The electro production cross sections of ed→ed∗ed\to ed^* have been calculated based on the meson exchange current model and the cross section around 30 degree of 1 GeV electron in the laboratory frame is about 10 nb. The implication of this result for the d∗d^* dibaryon search has been discussed.Comment: 12 pages, 12 figures, Late
    • 

    corecore