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We present application examples of a graphical method for the efficient construction of potential matrix elements in quantum
physics or quantum chemistry. The simplicity and power of this method are illustrated through several examples. In particular, a
complete set of potential matrix elements for electron-lithium scattering are derived for the first time using this method, which
removes the frozen core approximation adopted by previous studies. This method can be readily adapted to study other many-body
quantum systems.

1. Introduction

The fundamental problem encountered by a theoretician
working in the field of quantum physics or quantum
chemistry is to evaluate the so-called observables 〈ψ|Ω|ψ〉 to
certain precision. Here, ψ is the wave function of the system
under investigation, and Ω is the operator representing the
physical quantity one needs to evaluate. This seemingly
easy task encounters many obstacles, one of which is
the complexity of the physical structure of a composite
system. For example, there are several electrons and nuclei
interacting with each other in an atomic or molecular system.
Even though the exact form of such interactions is well
known, it is exceedingly difficult to obtain accurate solutions
from the corresponding Schrödinger or Dirac equation.

However, most physical systems have symmetry proper-
ties that influence their dynamics and structures in a way
independent of the detailed interactions. A good example
is the motion of a particle in a central field. The symmetry
of the interaction leads to the conservation of angular
momentum that is independent of the detailed form of
the interaction potential V(r). Angular momentum theory
deals with rotational symmetries of a composite system.
In classical physics, angular momentum treatments are
straightforward following the simple manipulation rules of

vectors. In the quantum world, not only the magnitude
of angular momenta is quantized, but also their spatial
orientations.

Angular momentum calculations in quantum theory
prove to be most laborious, especially when many-body
systems or complicated operators are involved. Furthermore,
the final expressions are often incomprehensible even for
experienced researchers in the field. Unless one derives the
equations himself by a painstakingly tedious procedure, one
cannot really tell where the phases and the n- j symbols come
from. It is also quickly apparent, once one begins to derive
the complete reduced potential matrix-elements for systems
beyond four electrons, that the expressions become rapidly
intractable to algebraic derivation by conventional methods.
The problems are simply due to the vast number of Clebsch-
Gordan coefficients that comprise the expressions, each of
which is summed over several angular momentum labels. In
addition, there are many pages of practical formulas that one
often needs in order to perform these calculations, such as
those listed in the appendixes of Brink and Satchler [1].

In view of these difficulties, we started to search for a
method that is transparent, free of the incomprehensible
phases, makes minimal use of formulas, and leads easily
to a correct final expression. We will demonstrate in this
paper that the invariant graphical method initiated by Danos
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Figure 1: (a) Basic recoupling transformation graph; (b) recou-
pling of three tensors.

and Fano [2] meets all the above criteria. We will then
apply this method to derive the reduced matrix elements
of selected electron-atom interaction potentials, which are
not available mainly due to the difficulties mentioned above.
This method can be readily adapted to study other many-
body systems such as two-photon double ionization of atoms
[3, 4], two-nucleon knockout reactions [5], spin networks
[6], and entangled N spin-1/2 qubits [7, 8].

A central point to this method is the concept that most
physical quantities are invariant, that is, they are independent
of the coordinate system one chooses for their description.
This is the case for energies, cross-sections, and transition
probabilities. In other words, these quantities are scalar
quantities and have zero angular momentum. Consequently,
the tensors they may contain would couple to a total of
zero angular momentum. We will demonstrate, in the next
section, that angular momentum calculations become much
simpler once we take this invariance into account. Atomic
units are used throughout this paper.

2. Elements of the Invariant Graphical Method

In the invariant graphical method, there is only one basic
graph (Figure 1(a)) for angular momentum coupling and
recoupling. The essential elements are the horizontal lines,
each representing a tensor with a given angular momentum
labeled above the line. Here, tensors are used to represent all
quantities including wave functions, operators, amplitudes,
and so forth. In this way, a scalar quantity is a tensor of
rank zero. A vector is a tensor of rank one and so on.
As an example, the state with angular momentum L can
be represented by a tensor Ψ of the rank L. This graph
provides the basic transformation associated with four
angular momenta to rearrange them into a different coupling
scheme. The transformation is represented by a recoupling
box, mathematically associated with a square 9- j symbol
such that

[[
A[a]B[b]

][e][
C[c]D[d]

][ f ]
][i]

=
∑
gh

⎡
⎢⎢⎢⎣
a b e

c d f

g h i

⎤
⎥⎥⎥⎦
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][h]
][i]

,

(1)

where [A[J]B[K]]
[I]
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mJmK
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[K]
mK is rep-
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J
I

. The square 9- j symbol is related to the
Wigner 9- j coefficients by
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⎪⎭, (2)

where â = √2a + 1.
This basic graph is the key building block of this method.

All possible recoupling transformation can be performed
based upon this graph. For example, the recoupling of three
angular momenta can be derived using the graph illustrated
in Figure 1(b) as

[
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][ f ]
][i]

=
∑
h
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0 b b
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][i]

.

(3)

In this method, there is no need to use 6- j symbols, which
carry extra phases and normalization constants that can lead
to tedious book-keeping and are prone to errors. There is
also no need to remember the many sum rules, which are
required to eliminate unnecessary summation indexes in
other conventional methods.

3. Applications

Coupled-channel equations have been used extensively in the
description of electron-atom scattering. Their application
has been particularly successful in the so-called convergent
close-coupling approach (CCC) implemented by Bray and
Stelbovics [9] and subsequently extended to other atoms
with one or two valence electrons outside an inert core
[10, 11, 13]. To perform such calculations, one requires the
reduced matrix elements of the coupled-channel potentials,
which we denote by 〈L′‖V‖L〉 with L representing the
complete set of quantum numbers specifying a particular
configuration of the system under study. For electron
scattering from an N-electron target, the coupled-channel
reduced matrix elements have the following structure

〈
L′‖V‖L〉

=
〈
L′
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N

r0
+

N∑
i=1

1
r0i

−
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⎜⎜⎜⎝−

N∑
i=0

N

ri
+

N∑
i, j=0
i> j

1
ri j
− E

⎞
⎟⎟⎟⎠

N∑
i=1

P0i
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〉

,

(4)

which includes both the direct and exchange terms. Here, P
is the permutation operator, E is the system energy, subscript
0 denotes the incoming electron, and subscripts 1-N denote
the target electrons. Using the explicitly antisymmetrized
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Figure 2: Recoupling graph for (7).
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Figure 5: Recoupling graph of the orbit tensors for (12).

target states, the reduced matrix elements can be simplified
to〈
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=
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Each of these terms will be derived explicitly for e-He and
e-Li scattering in Sections 3.2 and 3.3.

By employing the invariant graphical method, we will
derive a complete set of direct and exchange potential matrix
elements for electron-atom scattering, which are beyond the
frozen core approximation adopted by Wu et al. [12], Fursa
and Bray [13], Bray et al. [10, 16], and Zhang et al. [14].

3.1. Two-Electron System. To illustrate the use of the invari-
ant graphical method, we first consider the direct Coulomb
matrix elements for a two-electron system, that is,
〈(�′a�′b)�‖1/r12‖(�a�b)�〉, which was also discussed in detail in
Danos and Fano [2]. The complete coupling and recoupling
graph is shown in Figure 2. As described earlier, each line
in the figure represents a tensor with a given angular
momentum indicated by the label above the line. The joining
of two lines into one line represents coupling of their angular
momenta. Recoupling into a different tensor set is indicated
by a transformation box and needs to be carried out until
each component of the graph is expressible in terms of single-
particle matrix elements (e.g., the end boxes [λ|�′a|�a] and

[λ|�′b|�b] in this case). The invariance of such a triple product
provides a means of eliminating unnecessary intermediate
indexes. For example, it demands that the coupling of �′a
and �a must give rise to a tensor with angular momentum
λ instead of an arbitrary index. It also helps in identifying
the most direct and economical recoupling scheme. We first
expand the two-body Coulomb potential into its multipole
components

1
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where Y [L] = (−i)LYL and YL is the regular spherical
harmonic tensor. This definition is introduced to avoid
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Figure 6: Recoupling graph of the orbit tensors for (13).
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unnecessary phases entering the coupling and recoupling
scheme.

Each square 9- j symbol in (7) corresponds to a recou-
pling box in Figure 2. The end-box represents an invariant
matrix element containing three spherical harmonic tensors
written as [�|k| j], which equals

[
�|k| j] = i�+k+ j �̂k̂ ĵ√

4π

⎛
⎝� k j

0 0 0

⎞
⎠. (8)

For numerical computation purposes, (7) can be treated as
a final expression. Nevertheless, further simplification can be

made considering the many zeros in the 9- j symbols. This
leads to the well-known result (see, e.g, [15])
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3.2. Electron-He Scattering (A Three-Electron System). As a
second more complicated example, we will derive the
momentum-space direct and exchange matrix elements for
a three-electron system, such as electron scattering from a
helium atom. The general configuration of the system can
be represented by |L〉 ≡ |k(�0(�1�2)�)L; (σ0(σ1σ2)s)S〉, where
k, �0, and σ0 are, respectively, the linear, orbital angular and
spin momentum of the incoming electron, �1 and �2 are the
angular momenta of the target electrons, σ1 and σ2 are the
spin momenta of the target electrons, � and s are the total
orbit angular and spin momentum of the target atom, and L
and S are the total orbit angular and spin momentum of the
entire system. Note that the linear radial integral part of the

direct and exchange elements is straightforward to work out
and has the general form of
〈
n′2�

′
2,n2�2

〉〈
k′�′0, k�0;n′1�

′
1,n1�1

〉

≡
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×
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rλ<
rλ+1
>

dr0dr1,

(10)

where ϕn� are the target atomic orbitals with quantum num-
bers n and �, and u� is the �th partial wave of the projectile
electron. The coupling and recoupling graph for the direct
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Figure 10: Recoupling graph of the orbit tensors for (17).
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Figure 11: Recoupling graph of the orbit tensors for (18).
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Figure 12: Recoupling graph of the orbit tensors for (19).
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Figure 13: Recoupling graph of the orbit tensors for (20).
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Figure 14: Recoupling graph of the orbit tensors for (21).
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Minor simplification of (11)–(15) gives rise to the same
expressions presented in [11], where the conventional alge-
braic approach was used. However, we emphasize that the
invariant graphical method is so much simpler with the
derivation completed by drawing the diagrams.

3.3. Electron-Li Scattering (A Four-Electron System). Deriva-
tions for these momentum-space potentials have been
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Figure 15: Recoupling graph of the orbit tensors for (22).

previously given for e-H [9], for e-Li [11], for e-Na [16], and
for e-He [16], all using the conventional algebraic approach.
The frozen core approximation was adopted for e-Li and e-
Na in these studies, which could be the main reason for the
small discrepancies between the theoretical calculations and
experiments [10]. With the enormous success of quantum
scattering theories in describing scattering from one- and
two-electron targets, one is naturally seeking to perform
calculations with more complex systems and free of approx-
imations. However, such an extension has been proven to be
extremely tedious and in some cases even intractable. In the
following, we derive a complete set of direct and exchange
matrix elements for electron-Lithium scattering (previously
not available) using the invariant graphical method. In this
way, we are able to remove the frozen core approximation
adopted by Bray et al. [10, 16] and Zhang et al. [14]. Again,
the linear radial integral part of the direct and exchange
elements is straightforward to work out and has the general
form of

〈
n′2�

′
2,n2�2

〉〈
n′3�

′
3,n3�3

〉〈
k′�′0, k�0;n′1�

′
1,n1�1

〉

≡
〈
ϕn′2�′2 | ϕn2�2

〉〈
ϕn′3�′3 | ϕn3�3

〉

×
∫
u�′0 (k′r0)u�0 (kr0)ϕn′�′1 (r1)ϕn�1 (r1)

rλ<
rλ+1
>

dr0dr1.

(16)

The corresponding coupling and recoupling graphs are
shown in Figures 9, 10, 11, 12, 13, 14, and 15, and the results
are as the following:
〈
�k′�′0

(
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′
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)
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4. Conclusions

The invariant graphical method developed by Danos and
Fano [2] is very powerful. The complex manipulation of
angular momenta is reduced to the drawing of a compact
graph, from which the final expressions can be readily
read off. The procedure is transparent and simple to apply.
It avoids writing out the intermediate expansions, yields



14 Advances in Physical Chemistry

immediately the selection rules for intermediate angular
momenta, and helps in finding the most direct and economi-
cal intermediate recoupling. It also requires a minimal use of
rules in comparison with pages of formulas involved in other
conventional methods.

Acknowledgments

J. B. Wang would like to thank H. Y. Wu for cross-
checking the phases in (11) using the conventional algebraic
method. The authors also acknowledge support from The
University of Western Australia, Murdoch University, and
Curtin University of Technology.

References

[1] D. M. Brink and G. R. Satchler, Angular Momentum, Oxford
University Press, Oxford, UK, 1993.

[2] M. Danos and U. Fano, “Graphical analysis of angular
momentum for collision products,” Physics Report, vol. 304,
no. 4, pp. 155–227, 1998.

[3] A. S. Kheifets, “Sequential two-photon double ionization of
noble gas atoms,” Journal of Physics B, vol. 40, no. 22, pp. F313–
F318, 2007.

[4] A. S. Kheifets, “Photoelectron angular correlation pattern in
sequential two-photon double ionization of neon,” Journal of
Physics B, vol. 42, no. 13, Article ID 134016, 2009.

[5] E. C. Simpson, J. A. Tostevin, D. Bazin, and A. Gade, “Lon-
gitudinal momentum distributions of the reaction residues
following fast two-nucleon knockout reactions,” Physical
Review C, vol. 79, no. 6, Article ID 064621, 2009.

[6] V. Aquilanti, A. C. P. Bitencourt, C. Da, A. Marzuoli, and
M. Ragni, “Combinatorics of angular momentum recoupling
theory: spin networks, their asymptotics and applications,”
Theoretical Chemistry Accounts, vol. 123, no. 3-4, pp. 237–247,
2009.

[7] J. Suzuki, G. N. M. Tabia, and B. G. Englert, “Symmetric
construction of reference-frame-free qudits,” Physical Review
A, vol. 78, no. 5, Article ID 052328, 2008.

[8] A. Maser, U. Schilling, T. Bastin, E. Solano, C. Thiel, and J. Von
Zanthier, “Generation of total angular momentum eigenstates
in remote qubits,” Physical Review A, vol. 79, no. 3, Article ID
033833, 2009.

[9] I. Bray and A. T. Stelbovics, “Convergent close-coupling
calculations of electron-hydrogen scattering,” Physical Review
A, vol. 46, no. 11, pp. 6995–7011, 1992.

[10] I. Bray, J. Beck, and C. Plottke, “Spin-resolved electron-impact
ionization of lithium,” Journal of Physics B, vol. 32, no. 17, pp.
4309–4320, 1999.

[11] D. V. Fursa and I. Bray, “Calculation of electron-helium
scattering,” Physical Review A, vol. 52, no. 2, pp. 1279–1297,
1995.

[12] H. Wu, I. Bray, D. V. Fursa, and A. T. Stelbovics, “Convergent
close-coupling calculations of positron-helium scattering at
intermediate to high energies,” Journal of Physics B, vol. 37, no.
6, pp. 1165–1172, 2004.

[13] D. V. Fursa and I. Bray, “Electron-impact ionization of the
helium metastable 2 S state,” Journal of Physics B, vol. 36, no.
8, pp. 1663–1671, 2003.

[14] X. Zhang, C. T. Whelan, and H. R. J. Walters, “Electron impact
ionization of lithium-spin asymmetry of the triple differential

cross section,” Journal of Physics B, vol. 25, pp. L457–L462,
1992.

[15] R. D. Cowan, The Theory of Atomic Structure and Spectra,
University of California Press, Berkeley, Calif, USA, 1981.

[16] I. Bray, “Convergent close-coupling method for the calculation
of electron scattering on hydrogenlike targets,” Physical Review
A, vol. 49, no. 2, pp. 1066–1082, 1994.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Inorganic Chemistry
International Journal of

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

 International Journal ofPhotoenergy

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Carbohydrate 
Chemistry

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporation
http://www.hindawi.com

 Analytical Methods 
in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry 
and Applications
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Spectroscopy
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Medicinal Chemistry
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Chromatography  
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Applied Chemistry
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Theoretical Chemistry
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Spectroscopy

Analytical Chemistry
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Quantum Chemistry

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Organic Chemistry 
International

Electrochemistry
International Journal of

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Catalysts
Journal of


