9,572 research outputs found

    Gravitation Wave Emission from Radio Pulsars Revisited

    Get PDF
    We report a new pulsar population synthesis based on Monte Carlo techniques, aiming to estimate the contribution of galactic radio pulsars to the continuous gravitational wave emission. Assuming that the rotation periods of pulsars at birth have a Gaussian distribution, we find that the average initial period is 290 ms. The number of objects with periods equal to or less than 0.4 s, and therefore capable of being detected by an interferometric gravitational antenna like VIRGO, is of the order of 5100-7800. With integration times lasting between 2 and 3 yr, our simulations suggest that about two detections should be possible, if the mean equatorial ellipticity of the pulsars is ϵ\epsilon =10−6^{-6}. A mean ellipticity an order of magnitude higher increases the expected number of detections to 12-18, whereas for ϵ<10−6\epsilon < 10^{-6}, no detections are expectedComment: accepted for publication in A&A, 9 pages, 8 figure

    Ages of Elliptical Galaxies: Single versus Multi Population Interpretation

    Full text link
    New calibrations of spectrophotometric indices of elliptical galaxies as functions of spectrophotometric indices are presented, permitting estimates of mean stellar population ages and metallicities. These calibrations are based on evolutionary models including a two-phase interstellar medium, infall and a galactic wind.Free parameters were fixed by requiring that models reproduce the mean trend of data in the color-magnitude diagram as well as in the plane of indices Hbeta-Mg2 and Mg2-. To improve the location of faint ellipticals(MB > -20) in the Hbeta-Mg2 diagram, down-sizing was introduced. An application of our calibrations to a sample of ellipticals and a comparison with results derived from single stellar population models is given. Our models indicate that mean population ages span an interval of 7-12 Gyr and are correlated with metallicities, which range from approximately half up to three times solar.Comment: 10 pages and 6 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journa

    Resonance Propagation and Threshold Singularities

    Get PDF
    We consider the problem of propagation of an unstable particle in the framework of Quantum Field Theory. Using unitarity, we show that a real renormalization constant free of threshold singularities naturally arises.Comment: 5 pages, no figures, revte

    Determining Heavy Mass Parameters in Supersymmetric SO(10) Models

    Full text link
    Extrapolations of soft scalar mass parameters in supersymmetric theories can be used to explore elements of the physics scenario near the grand unification scale. We investigate the potential of this method in the lepton sector of SO(10) which incorporates right-handed neutrino superfields. The method is exemplified in two models by exploring limits on the precision that can be expected from coherent LHC and e+e- collider analyses in the reconstruction of the fundamental scalar mass parameters at the unification scale and of the D-terms related to the breaking of grand unification symmetries. In addition, the mass of the third-generation right-handed neutrino can be estimated in seesaw scenarios. Even though the models are simplified and not intended to account for all aspects of a final comprehensive SO(10) theory, they provide nevertheless a valid base for identifying essential elements that can be inferred on the fundamental high-scale theory from high-energy experiments.Comment: 26 pp LaTeX; version published in Phys. Rev.

    Precision Measurements of Higgs Couplings: Implications for New Physics Scales

    Full text link
    The measured properties of the recently discovered Higgs boson are in good agreement with predictions from the Standard Model. However, small deviations in the Higgs couplings may manifest themselves once the currently large uncertainties will be improved as part of the LHC program and at a future Higgs factory. We review typical new physics scenarios that lead to observable modifications of the Higgs interactions. They can be divided into two broad categories: mixing effects as in portal models or extended Higgs sectors, and vertex loop effects from new matter or gauge fields. In each model we relate coupling deviations to their effective new physics scale. It turns out that with percent level precision the Higgs couplings will be sensitive to the multi-TeV regime.Comment: Invited review for Journal of Physics G, 33pp; v2: references added and improved discussion of operator basis in section 2.

    Bosonic Seesaw in the Unparticle Physics

    Full text link
    Recently, conceptually new physics beyond the Standard Model has been proposed by Georgi, where a new physics sector becomes conformal and provides "unparticle" which couples to the Standard Model sector through higher dimensional operators in low energy effective theory. Among several possibilities, we focus on operators involving the (scalar) unparticle, Higgs and the gauge bosons. Once the Higgs develops the vacuum expectation value (VEV), the conformal symmetry is broken and as a result, the mixing between the unparticle and the Higgs boson emerges. In this paper, we consider a natural realization of bosonic seesaw in the context of unparticle physics. In this framework, the negative mass squared or the electroweak symmetry breaking vacuum is achieved as a result of mass matrix diagonalization. In the diagonalization process, it is important to have zero value in the (1,1)-element of the mass matrix. In fact, the conformal invariance in the hidden sector can actually assure the zero of that element. So, the bosonic seesaw mechanism for the electroweak symmetry breaking can naturally be understood in the framework of unparticle physics.Comment: 5 pages, no figure; added one more referenc

    Quark core formation in spinning-down pulsars

    Get PDF
    Pulsars spin-down due to magnetic torque reducing its radius and increasing the central energy density. Some pulsar which are born with central densities close to the critical value of quark deconfinement may undergo a phase transition and structural re-arrengement. This process may excite oscillation modes and emmit gravitational waves. We determine the rate of quark core formation in neutron stars using a realistic population synthesis code.Comment: Proceedings of the 2nd International Workshop on Astronomy and Relativistic Astrophysics, to appear in IJMP

    Determining Sneutrino Masses and Physical Implications

    Full text link
    In some areas of supersymmetry parameter space, sneutrinos are lighter than the charginos and the next-to-lightest neutralino, and they decay into the invisible neutrino plus lightest-neutralino channel with probability one. In such a scenario they can be searched for in decays of charginos that are pair-produced in e+e- collisions, and in associated sneutrino-chargino production in photon-electron collisions. The sneutrino properties can be determined with high accuracy from the edges of the decay energy spectra in the first case and from threshold scans in the second. In the final part of the report we investigate the mass difference of sneutrinos and charged sleptons between the third and the first two generations in seesaw-type models of the neutrino/sneutrino sector. For a wide range these mass differences are sensitive to the seesaw scale.Comment: 20 p
    • …
    corecore