188 research outputs found
22q11.2 deletion syndrome
22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness - all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population
Cognitive deficits in childhood, adolescence and adulthood in 22q11.2 deletion syndrome and association with psychopathology
22q11.2 Deletion Syndrome (22q11.2DS) is associated with high risk of psychiatric disorders and cognitive impairment. It remains unclear to what extent key cognitive skills are associated with psychopathology, and whether cognition is stable over time in 22q11.2DS. 236 children, adolescents and adults with 22q11.2DS and 106 typically developing controls were recruited from three sites across Europe. Measures of IQ, processing speed, sustained attention, spatial working memory and psychiatric assessments were completed. Cognitive performance in individuals was calculated relative to controls in different age groups (children (6–9 years), adolescents (10–17 years), adults (18+ years)). Individuals with 22q11.2DS exhibited cognitive impairment and higher rates of psychiatric disorders compared to typically developing controls. Presence of Autism Spectrum Disorder symptoms was associated with greater deficits in processing speed, sustained attention and working memory in adolescents but not children. Attention deficit hyperactivity disorder in children and adolescents and psychotic disorder in adulthood was associated with sustained attention impairment. Processing speed and working memory were more impaired in children and adults with 22q11.2DS respectively, whereas the deficit in sustained attention was present from childhood and remained static over developmental stages. Psychopathology was associated with cognitive profile of individuals with 22q11.2DS in an age-specific and domain-specific manner. Furthermore, magnitude of cognitive impairment differed by developmental stage in 22q11.2DS and the pattern differed by domain
A neurogenetic model for the study of schizophrenia spectrum disorders: The International 22q11.2 Deletion Syndrome Brain Behavior Consortium
Rare copy number variants contribute significantly to the risk for schizophrenia, with the
22q11.2 locus consistently implicated. Individuals with the 22q11.2 deletion syndrome
(22q11DS) have an estimated 25-fold increased risk for schizophrenia spectrum disorders,
compared to individuals in the general population. The International 22q11DS Brain Behavior
Consortium is examining this highly informative neurogenetic syndrome phenotypically and
genomically. Here we detail the procedures of the effort to characterize the neuropsychiatric and
neurobehavioral phenotypes associated with 22q11DS, focusing on schizophrenia and
subthreshold expression of psychosis. The genomic approach includes a combination of whole
genome sequencing and genome-wide microarray technologies, allowing the investigation of all
possible DNA variation and gene pathways influencing the schizophrenia-relevant phenotypic
expression. A phenotypically rich data set provides a psychiatrically well-characterized sample
of unprecedented size (n=1,616) that informs the neurobehavioral developmental course of
22q11DS. This combined set of phenotypic and genomic data will enable hypothesis testing to
elucidate the mechanisms underlying the pathogenesis of schizophrenia spectrum disorders
Dysregulation of DGCR6 and DGCR6L: psychopathological outcomes in chromosome 22q11.2 deletion syndrome
Chromosome 22q11.2 deletion syndrome (22q11DS) is the most common microdeletion syndrome in humans. It is typified by highly variable symptoms, which might be explained by epigenetic regulation of genes in the interval. Using computational algorithms, our laboratory previously predicted that DiGeorge critical region 6 (DGCR6), which lies within the deletion interval, is imprinted in humans. Expression and epigenetic regulation of this gene have not, however, been examined in 22q11DS subjects. The purpose of this study was to determine if the expression levels of DGCR6 and its duplicate copy DGCR6L in 22q11DS subjects are associated with the parent-of-origin of the deletion and childhood psychopathologies. Our investigation showed no evidence of parent-of-origin-related differences in expression of both DGCR6 and DGCR6L. However, we found that the variability in DGCR6 expression was significantly greater in 22q11DS children than in age and gender-matched control individuals. Children with 22q11DS who had anxiety disorders had significantly lower DGCR6 expression, especially in subjects with the deletion on the maternal chromosome, despite the lack of imprinting. Our findings indicate that epigenetic mechanisms other than imprinting contribute to the dysregulation of these genes and the associated childhood psychopathologies observed in individuals with 22q11DS. Further studies are now needed to test the usefulness of DGCR6 and DGCR6L expression and alterations in the epigenome at these loci in predicting childhood anxiety and associated adult-onset pathologies in 22q11DS subjects
Pan-European landscape of research into neurodevelopmental copy number variants: a survey by the MINDDS consortium
Background
Several rare copy number variants have been identified to confer risk for neurodevelopmental disorders (NDD-CNVs), and increasingly NDD-CNVs are being identified in patients. There is a clinical need to understand the phenotypes of NDD-CNVs. However due to rarity of NDD-CNVs in the population, within individual countries there is a limited number of NDD-CNV carriers who can participate in research. The pan-european MINDDS (Maximizing Impact of Research in Neurodevelopmental Disorders) consortium was established in part to address this issue.
Methodology
A survey was developed to scope out the current landscape of NDD-CNV research across member countries of the MINDDS consortium, and to identify clinical cohorts with potential for future research.
Results
36 centres from across 16 countries completed the survey. We provide a list of centres who can be contacted for future collaborations. 3844 NDD-CNV carriers were identified across clinical and research centres spanning a range of medical specialties, including psychiatry, paediatrics, medical genetics. A broad range of phenotypic data was available; including medical history, developmental history, family history and anthropometric data. In 12/16 countries, over 75% of NDD-CNV carriers could be recontacted for future studies.
Conclusion
This survey has highlighted the potential within Europe for large multi-centre studies of NDD-CNV carriers, to improve knowledge of the complex relationship between NDD-CNV and clinical phenotype. The MINNDS consortium is in a position to facilitate collaboration, data-sharing and knowledge exchange on NDD-CNV phenotypes across Europe
Regional cortical volumes and congenital heart disease: a MRI study in 22q11.2 deletion syndrome
Children with congenital heart disease (CHD) who survive surgery often present impaired neurodevelopment and qualitative brain anomalies. However, the impact of CHD on total or regional brain volumes only received little attention. We address this question in a sample of patients with 22q11.2 deletion syndrome (22q11DS), a neurogenetic condition frequently associated with CHD. Sixty-one children, adolescents, and young adults with confirmed 22q11.2 deletion were included, as well as 80 healthy participants matched for age and gender. Subsequent subdivision of the patients group according to CHD yielded a subgroup of 27 patients with normal cardiac status and a subgroup of 26 patients who underwent cardiac surgery during their first years of life (eight patients with unclear status were excluded). Regional cortical volumes were extracted using an automated method and the association between regional cortical volumes, and CHD was examined within a three-condition fixed factor. Robust protection against type I error used Bonferroni correction. Smaller total cerebral volumes were observed in patients with CHD compared to both patients without CHD and controls. The pattern of bilateral regional reductions associated with CHD encompassed the superior parietal region, the precuneus, the fusiform gyrus, and the anterior cingulate cortex. Within patients, a significant reduction in the left parahippocampal, the right middle temporal, and the left superior frontal gyri was associated with CHD. The present results of global and regional volumetric reductions suggest a role for disturbed hemodynamic in the pathophysiology of brain alterations in patients with neurodevelopmental disease and cardiac malformations
Adaptive Strategy for the Statistical Analysis of Connectomes
We study an adaptive statistical approach to analyze brain networks represented by brain connection matrices of interregional connectivity (connectomes). Our approach is at a middle level between a global analysis and single connections analysis by considering subnetworks of the global brain network. These subnetworks represent either the inter-connectivity between two brain anatomical regions or by the intra-connectivity within the same brain anatomical region. An appropriate summary statistic, that characterizes a meaningful feature of the subnetwork, is evaluated. Based on this summary statistic, a statistical test is performed to derive the corresponding p-value. The reformulation of the problem in this way reduces the number of statistical tests in an orderly fashion based on our understanding of the problem. Considering the global testing problem, the p-values are corrected to control the rate of false discoveries. Finally, the procedure is followed by a local investigation within the significant subnetworks. We contrast this strategy with the one based on the individual measures in terms of power. We show that this strategy has a great potential, in particular in cases where the subnetworks are well defined and the summary statistics are properly chosen. As an application example, we compare structural brain connection matrices of two groups of subjects with a 22q11.2 deletion syndrome, distinguished by their IQ scores
Visuospatial working memory in children and adolescents with 22q11.2 deletion syndrome; an fMRI study
22q11.2 deletion syndrome (22q11DS) is a genetic disorder associated with a microdeletion of chromosome 22q11. In addition to high rates of neuropsychiatric disorders such as schizophrenia and attention deficit hyperactivity disorder, children with 22q11DS have a specific neuropsychological profile with particular deficits in visuospatial and working memory. However, the neurobiological substrate underlying these deficits is poorly understood. We investigated brain function during a visuospatial working memory (SWM) task in eight children with 22q11DS and 13 healthy controls, using fMRI. Both groups showed task-related activation in dorsolateral prefrontal cortex (DLPFC) and bilateral parietal association cortices. Controls activated parietal and occipital regions significantly more than those with 22q11DS but there was no significant between-group difference in DLPFC. In addition, while controls had a significant age-related increase in the activation of posterior brain regions and an age-related decrease in anterior regions, the 22q11DS children showed the opposite pattern. Genetically determined differences in the development of specific brain systems may underpin the cognitive deficits in 22q11DS, and may contribute to the later development of neuropsychiatric disorders
A neurogenetic model for the study of schizophrenia spectrum disorders: The International 22q11.2 Deletion Syndrome Brain Behavior Consortium
Rare copy number variants contribute significantly to the risk for schizophrenia, with the
22q11.2 locus consistently implicated. Individuals with the 22q11.2 deletion syndrome
(22q11DS) have an estimated 25-fold increased risk for schizophrenia spectrum disorders,
compared to individuals in the general population. The International 22q11DS Brain Behavior
Consortium is examining this highly informative neurogenetic syndrome phenotypically and
genomically. Here we detail the procedures of the effort to characterize the neuropsychiatric and
neurobehavioral phenotypes associated with 22q11DS, focusing on schizophrenia and
subthreshold expression of psychosis. The genomic approach includes a combination of whole
genome sequencing and genome-wide microarray technologies, allowing the investigation of all
possible DNA variation and gene pathways influencing the schizophrenia-relevant phenotypic
expression. A phenotypically rich data set provides a psychiatrically well-characterized sample
of unprecedented size (n=1,616) that informs the neurobehavioral developmental course of
22q11DS. This combined set of phenotypic and genomic data will enable hypothesis testing to
elucidate the mechanisms underlying the pathogenesis of schizophrenia spectrum disorders
Nested inversion polymorphisms predispose chromosome 22q11.2 to meiotic rearrangements [RETRACTED]
Inversion polymorphisms between low-copy repeats (LCRs) might predispose chromosomes to meiotic non-allelic homologous recombination (NAHR) events and thus lead to genomic disorders. However, for the 22q11.2 deletion syndrome (22q11.2DS), the most common genomic disorder, no such inversions have been uncovered as of yet. Using fiber-FISH, we demonstrate that parents transmitting the de novo 3 Mb LCR22A–D 22q11.2 deletion, the reciprocal duplication, and the smaller 1.5 Mb LCR22A–B 22q11.2 deletion carry inversions of LCR22B–D or LCR22C–D. Hence, the inversions predispose chromosome 22q11.2 to meiotic rearrangements and increase the individual risk for transmitting rearrangements. Interestingly, the inversions are nested or flanking rather than coinciding with the deletion or duplication sizes. This finding raises the possibility that inversions are a prerequisite not only for 22q11.2 rearrangements but also for all NAHR-mediated genomic disorders
- …