388 research outputs found

    Fast maximum likelihood estimation via equilibrium expectation for large network data

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.A major line of contemporary research on complex networks is based on the development of statistical models that specify the local motifs associated with macro-structural properties observed in actual networks. This statistical approach becomes increasingly problematic as network size increases. In the context of current research on efficient estimation of models for large network data sets, we propose a fast algorithm for maximum likelihood estimation (MLE) that affords a significant increase in the size of networks amenable to direct empirical analysis. The algorithm we propose in this paper relies on properties of Markov chains at equilibrium, and for this reason it is called equilibrium expectation (EE). We demonstrate the performance of the EE algorithm in the context of exponential random graph models (ERGMs) a family of statistical models commonly used in empirical research based on network data observed at a single period in time. Thus far, the lack of efficient computational strategies has limited the empirical scope of ERGMs to relatively small networks with a few thousand nodes. The approach we propose allows a dramatic increase in the size of networks that may be analyzed using ERGMs. This is illustrated in an analysis of several biological networks and one social network with 104,103 nodes.Swiss National Science Foundatio

    Design and Fabrication of Terahertz Metallic Gratings on a Two-Wire Waveguide

    Get PDF
    In this study, we present the design, fabrication and experimental characterization of waveguide-integrated gratings operating at THz frequencie

    Ultraviolet generation in periodically poled Lithium Tantalate waveguides

    Get PDF
    We demonstrate ultraviolet generation in lithium tantalate channel waveguides for frequency doubling via quasi-phase-matching. The samples, proton exchanged and nanostructured by electric-field assisted surface periodic poling with domains as deep as 40 μm, yield continuous wave light at 365.4 nm with conversion efficiencies larger than 7.5% W-1 cm-2

    Features of randomized electric-field assisted domain inversion in lithium tantalate

    Get PDF
    We report on bulk and guided-wave second-harmonic generation via random Quasi-Phase-Matching in Lithium Tantalate. By acquiring the far-field profiles at several wavelengths, we extract statistical information on the distribution of the quadratic nonlinearity as well as its average period, both at the surface and in the bulk of the sample. By investigating the distribution in the two regions we demonstrate a non-invasive approach to the study of poling dynamics

    Symmetric Vlasov-type antenna for High Power Microwave applications

    Get PDF
    We present a novel Vlasov-type antenna operating at 2.5 GHz and composed of a circular waveguide with a double bevel-cut. Simulation results show that the proposed antenna is capable of providing a wider emission angle if compared to standard Vlasov configurations, while still maintaining an adequate gain level. For this reason, it could be of interest for those High-Power Microwave (HPM) applications in which a larger area need to be covered by the EM field

    Lock-free Parallel Dynamic Programming

    Get PDF
    We show a method for parallelizing top down dynamic programs in a straightforward way by a careful choice of a lock-free shared hash table implementation and randomization of the order in which the dynamic program computes its subproblems. This generic approach is applied to dynamic programs for knapsack, shortest paths, and RNA structure alignment, as well as to a state-of-the-art solution for minimizing the máximum number of open stacks. Experimental results are provided on three different modern multicore architectures which show that this parallelization is effective and reasonably scalable. In particular, we obtain over 10 times speedup for 32 threads on the open stacks problem

    Random quasi-phase-matched second-harmonic generation in periodically poled lithium tantalate

    Get PDF
    We observe second harmonic generation via random quasi-phase-matching in a 2.0 micron periodically poled, 1-cm-long, z-cut lithium tantalate. Away from resonance, the harmonic output profiles exhibit a characteristic pattern stemming from a stochastic domain distribution and a quadratic growth with the fundamental excitation, as well as a broadband spectral response. The results are in good agreement with a simple model and numerical simulations in the undepleted regime, assuming an anisotropic spread of the random nonlinear component

    Transcriptional Stress Induces Chromatin Relocation of the Nucleotide Excision Repair Factor XPG.

    Get PDF
    Endonuclease XPG participates in nucleotide excision repair (NER), in basal transcription, and in the processing of RNA/DNA hybrids (R-loops): the malfunction of these processes may cause genome instability. Here, we investigate the chromatin association of XPG during basal transcription and after transcriptional stress. The inhibition of RNA polymerase II with 5,6-dichloro-l-β-D-ribofuranosyl benzimidazole (DRB), or actinomycin D (AD), and of topoisomerase I with camptothecin (CPT) resulted in an increase in chromatin-bound XPG, with concomitant relocation by forming nuclear clusters. The cotranscriptional activators p300 and CREB-binding protein (CREBBP), endowed with lysine acetyl transferase (KAT) activity, interact with and acetylate XPG. Depletion of both KATs by RNA interference, or chemical inhibition with C646, significantly reduced XPG acetylation. However, the loss of KAT activity also resulted in increased chromatin association and the relocation of XPG, indicating that these processes were induced by transcriptional stress and not by reduced acetylation. Transcription inhibitors, including C646, triggered the R-loop formation and phosphorylation of histone H2AX (γ-H2AX). Proximity ligation assay (PLA) showed that XPG colocalized with R-loops, indicating the recruitment of the protein to these structures. These results suggest that transcriptional stress-induced XPG relocation may represent recruitment to sites of R-loop processing
    corecore