882 research outputs found
Raman solitons in transient SRS
We report the observation of Raman solitons on numerical simulations of
transient stimulated Raman scattering (TSRS) with small group velocity
dispersion. The theory proceeds with the inverse scattering transform (IST) for
initial-boundary value problems and it is shown that the explicit theoretical
solution obtained by IST for a semi-infinite medium fits strikingly well the
numerical solution for a finite medium. We understand this from the rapid
decrease of the medium dynamical variable (the potential of the scattering
theory). The spectral transform reflection coefficient can be computed directly
from the values of the input and output fields and this allows to see the
generation of the Raman solitons from the numerical solution. We confirm the
presence of these nonlinear modes in the medium dynamical variable by the use
of a discrete spectral analysis.Comment: LaTex file, to appear in Inverse Problem
Bisacylphosphane oxides as photo-latent cytotoxic agents and potential photo-latent anticancer drugs
Bisacylphosphane oxides (BAPOs) are established as photoinitiators for industrial applications. Light irradiation leads to their photolysis, producing radicals. Radical species induce oxidative stress in cells and may cause cell death. Hence, BAPOs may be suitable as photolatent cytotoxic agents, but such applications have not been investigated yet. Herein, we describe for the first time a potential use of BAPOs as drugs for photolatent therapy. We show that treatment of the breast cancer cell lines MCF-7 and MDA-MB-231 and of breast epithelial cells MCF-10A with BAPOs and UV irradiation induces apoptosis. Cells just subjected to BAPOs or UV irradiation alone are not affected. The induction of apoptosis depend on the BAPO and the irradiation dose. We proved that radicals are the active species since cells are rescued by an antioxidant. Finally, an optimized BAPO-derivative was designed which enters the cells more efficiently and thus leads to stronger effects at lower doses
Hamiltonian formalism of the DNLS equation with nonvanished boundary value
Hamiltonian formalism of the DNLS equation with nonvanishing boundary value
is developed by the standard procedure.Comment: 11 page
Darboux transformation for two component derivative nonlinear Schr\"odinger equation
In this paper, we consider the two component derivative nonlinear
Schr\"{o}dinger equation and present a simple Darboux transformation for it. By
iterating this Darboux transformation, we construct a compact representation
for the soliton solutions.Comment: 12 pages, 2 figure
Solubility of precursors and carbonation of waterglass-free geopolymers
Geopolymers have the potential to function as an environmentally friendly substitute for ordinary Portland cement, with up to 80% less CO emission during production. The effect is best utilized for geopolymers prepared with amorphous silica instead of waterglass (NaSiO) to adjust the Si:Al ratio. The reactivity of the precursors with the alkaline activator affects the final mineralogical properties of the binder. The purpose of the present study was to investigate the amount of different phases formed during geopolymerization and to understand the quantitative evolution of carbonation during geopolymer synthesis by determining the solubility of metakaolinite and amorphous SiO in NaOH at various concentrations. The solubility was studied by ICP-OES measurements. X-ray diffraction was used for qualitative and quantitative phase analysis of the geopolymers. The solubility of the precursors increased with calcination temperature of metakaolinite, reaction time for amorphous SiO, and at higher NaOH concentrations. Partial dissolution resulted in free Na, which is a source for the formation of carbonates in the geopolymers. Thermonatrite occurred prior to trona formation in all samples
Magnetoelastic nature of solid oxygen epsilon-phase structure
For a long time a crystal structure of high-pressure epsilon-phase of solid
oxygen was a mistery. Basing on the results of recent experiments that have
solved this riddle we show that the magnetic and crystal structure of
epsilon-phase can be explained by strong exchange interactions of
antiferromagnetic nature. The singlet state implemented on quaters of O2
molecules has the minimal exchange energy if compared to other possible singlet
states (dimers, trimers). Magnetoelastic forces that arise from the spatial
dependence of the exchange integral give rise to transformation of 4(O2)
rhombuses into the almost regular quadrates. Antiferromagnetic character of the
exchange interactions stabilizes distortion of crystal lattice in epsilon-phase
and impedes such a distortion in long-range alpha- and delta-phases.Comment: 11 pages, 4 figures, Changes: corrected typos, reference to the
recent paper is adde
Existence of superposition solutions for pulse propagation in nonlinear resonant media
Existence of self-similar, superposed pulse-train solutions of the nonlinear,
coupled Maxwell-Schr\"odinger equations, with the frequencies controlled by the
oscillator strengths of the transitions, is established. Some of these
excitations are specific to the resonant media, with energy levels in the
configurations of and and arise because of the interference
effects of cnoidal waves, as evidenced from some recently discovered identities
involving the Jacobian elliptic functions. Interestingly, these excitations
also admit a dual interpretation as single pulse-trains, with widely different
amplitudes, which can lead to substantially different field intensities and
population densities in different atomic levels.Comment: 11 Pages, 6 Figures, presentation changed and 3 figures adde
Intermediate phase, network demixing, boson and floppy modes, and compositional trends in glass transition temperatures of binary AsxS1-x system
The structure of binary As_xS_{1-x} glasses is elucidated using
modulated-DSC, Raman scattering, IR reflectance and molar volume experiments
over a wide range (8%<x<41%) of compositions. We observe a reversibility window
in the calorimetric experiments, which permits fixing the three elastic phases;
flexible at x<22.5%, intermediate phase (IP) in the 22.5%<x<29.5% range, and
stressed-rigid at x>29.5%. Raman scattering supported by first principles
cluster calculations reveal existence of both pyramidal (PYR, As(S1/2)3) and
quasi-tetrahedral(QT, S=As(S1/2)3) local structures. The QT unit concentrations
show a global maximum in the IP, while the concentration of PYR units becomes
comparable to those of QT units in the phase, suggesting that both these local
structures contribute to the width of the IP. The IP centroid in the sulfides
is significantly shifted to lower As content x than in corresponding selenides,
a feature identified with excess chalcogen partially segregating from the
backbone in the sulfides, but forming part of the backbone in selenides. These
ideas are corroborated by the proportionately larger free volumes of sulfides
than selenides, and the absence of chemical bond strength scaling of Tgs
between As-sulfides and As-selenides. Low-frequency Raman modes increase in
scattering strength linearly as As content x of glasses decreases from x = 20%
to 8%, with a slope that is close to the floppy mode fraction in flexible
glasses predicted by rigidity theory. These results show that floppy modes
contribute to the excess vibrations observed at low frequency. In the
intermediate and stressed rigid elastic phases low-frequency Raman modes
persist and are identified as boson modes. Some consequences of the present
findings on the optoelectronic properties of these glasses is commented upon.Comment: Accepted for PR
Two-Pulse Propagation in Media with Quantum-Mixed Ground States
We examine fully coherent two-pulse propagation in a lambda-type medium,
under two-photon resonance conditions and including inhomogeneous broadening.
We examine both the effects of short pulse preparation and the effects of
medium preparation. We contrast cases in which the two pulses have matched
envelopes or not, and contrast cases in which ground state coherence is present
or not. We find that an extended interpretation of the Area Theorem for
single-pulse self-induced transparency (SIT) is able to unify two-pulse
propagation scenarios, including some aspects of electromagnetically-induced
transparency (EIT) and stimulated Raman scattering (SRS). We present numerical
solutions of both three-level and adiabatically reduced two-level density
matrix equations and Maxwell's equations, and show that many features of the
solutions are quickly interpreted with the aid of analytic solutions that we
also provide for restricted cases of pulse shapes and preparation of the
medium. In the limit of large one-photon detuning, we show that the two-level
equations commonly used are not reliable for pulse Areas in the 2 range,
which allows puzzling features of previous numerical work to be understood.Comment: 28 pages, 7 figures. Replaced with version accepted in PR
A Quantum Broadcasting Problem in Classical Low Power Signal Processing
We pose a problem called ``broadcasting Holevo-information'': given an
unknown state taken from an ensemble, the task is to generate a bipartite state
transfering as much Holevo-information to each copy as possible.
We argue that upper bounds on the average information over both copies imply
lower bounds on the quantum capacity required to send the ensemble without
information loss. This is because a channel with zero quantum capacity has a
unitary extension transfering at least as much information to its environment
as it transfers to the output.
For an ensemble being the time orbit of a pure state under a Hamiltonian
evolution, we derive such a bound on the required quantum capacity in terms of
properties of the input and output energy distribution. Moreover, we discuss
relations between the broadcasting problem and entropy power inequalities.
The broadcasting problem arises when a signal should be transmitted by a
time-invariant device such that the outgoing signal has the same timing
information as the incoming signal had. Based on previous results we argue that
this establishes a link between quantum information theory and the theory of
low power computing because the loss of timing information implies loss of free
energy.Comment: 28 pages, late
- …